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ABSTRACT 

To achieve better performance with Java applications, computers can be 

interconnected with fast networks to form a cluster making available multiple Java 

Virtual Machines. Unfortunately, Java does not provide an elegant, easy to use 

mechanism for parallel programming on clusters. JavaParty transparently adds remote 

objects to Java while avoiding the disadvantages of programming with remote method 

invocation (RMI) and many disadvantages of the message-passing approach in general. 

This thesis presents a performance analysis of a cluster running a Java benchmark using 

JavaParty. It reveals quantitative performance measurements showing a decrease in 

application execution time by adding more machines. In addition, this thesis presents a 

method to increase the performance of the cluster network in the presence of network 

congestion using Quality of Service (QoS).  
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EXECUTIVE SUMMARY 

There is a growing interest in parallel programming with Java.  This is because 

Java’s clean and type-safe object-oriented programming model makes it ideal for writing 

reliable, stable, parallel programs on all scales. However, parallel programming with Java 

can be tedious and time consuming with increased program length and complexity. In 

addition, Java’s communication mechanism, Remote Method Invocation (RMI), is too 

slow [1]. Its heavy overhead, fault tolerant design was created for a distributed 

environment, not parallel.  

One possible solution to this problem is JavaParty [1].  JavaParty extends Java 

beyond one computer more transparently than RMI. This is done by the programmer 

identifying Java classes that can be run remotely with a keyword extension. JavaParty’s 

modified run-time system also cuts out unnecessary Java overhead not needed when 

running applications on a cluster of computers.  

A Java benchmark was used to test the performance of JavaParty on a cluster of 

eight LINUX machines connected with a gigabit per second Ethernet switch. The mean 

execution time for 50 runs of the benchmark was found. Running the benchmark with 

two machines took 73.79 seconds. Increasing the number of machines to three, four, six 

and eight machines improved cluster performance with execution times of 50.78, 38.10, 

27.12, and 21.45 respectively. When implementing a parallel Java system using 

JavaParty, faster program execution times can be achieved by adding additional JVMs. 

The performance of JavaParty was also tested with network congestion. Four 

machines were used to run the benchmark while the remaining four machines bombarded 

the cluster with data packets. With the added congestion, the mean execution time 

increased from 38.10 seconds to 57.90 seconds, a 19.8 second difference.  

To improve the performance of JavaParty in the presence of added congestion, a 

QoS (Quality of Service) profile was used to prioritize JavaParty traffic entering and 

exiting the network switch. This was done by configuring the switch to classify JavaParty 

traffic with a higher priority than the generated data packets. The switch was then 



 xvi

configured to service this high priority JavaParty traffic before servicing other traffic. 

Implementing this profile decreased the mean execution time with added congestion from 

57.90 seconds to 44.07 seconds, a significant improvement. In the presence of network 

congestion, a QoS profile can be configured with the cluster interconnect to prioritize 

JavaParty traffic between the nodes significantly increasing performance. 
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I. INTRODUCTION  

A. PROBLEM OVERVIEW 

In recent years, personal computer technology has advanced tremendously. 

Hardware prices are affordable and the computing power of today’s organizations 

continues to grow. One cost effective solution to obtain more computing power is to 

build clusters of computers using commodity hardware and open source operating 

systems linked with a high speed network. This offers a solution that delivers high 

performance while keeping the price reasonable and avoiding issues with vendor 

dependence. Parallel applications can be run faster using multiple computers compared to 

using just one computer of the same type. 

One particular high-level language that has a growing interest in use with high 

performance computing is Java. This is because Java’s clean and type-safe object-

oriented programming model makes it ideal for writing reliable and stable programs on 

all scales.  Unfortunately, there are many hurdles involved with paralleling Java programs 

that make it a less preferred choice.  These problems include sequential language 

constructs, e.g., floating point performance, lack of complex numbers and inefficient 

multidimensional arrays.  Perhaps the most challenging problem for running parallel Java 

programs is its inter-process communication mechanism: Remote Method Invocation 

(RMI).   

According to [1], RMI poses the following problems when run in a cluster 

environment: 

• RMI is too slow for environments with low latency and high bandwidth.  

• RMI’s overhead for dealing with network problems is too verbose for a 

cluster environment.   

• The program size increases significantly reducing productivity and 

maintainability. 
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• Writing code to implement RMI can become tedious, time consuming and 

hard to manage. 

One possible solution to this problem is JavaParty.  JavaParty extends Java’s 

capabilities as minimally and transparently as possible. When programming using 

“JavaParty code”, all the programmer has to do is identify and tag which classes can be 

run remotely. The JavaParty compiler then creates the pure Java plus RMI utilizing a 

preprocessor. In addition, JavaParty’s modified runtime system was designed for 

computers connected on a low latency, high bandwidth network, i.e., a cluster. This is 

contrary to RMI’s traditional fault tolerant design for computers networked over long 

distances.    

B. MOTIVATION 

The combination of relatively low cost hardware, open source operating systems, 

and a freely distributed mechanism to parallelize Java applications has the potential to 

create a low-cost, high performance computer cluster that can be applied to several 

domains of interest, particularly modeling and simulation. The advanced networking 

laboratory will be able to utilize the cluster for network protocol simulation and research 

concerning mobile ADHOC and sensor networks significantly increasing research 

productivity.  Ultimately, the goal of this research is to assemble, configure, and 

benchmark a networked cluster of eight computers that can run parallel Java applications. 

In addition, the research will explore optimizing the cluster under non-ideal network 

conditions.  

C. THESIS ORGANIZATION 

This thesis is composed of six chapters. The current chapter states the problem 

overview, motivation and thesis organization. Chapter II provides background on the 

subject and the related work. Chapter III discusses the design, improvements, and 

implementation of JavaParty. Chapter IV describes the performance of JavaParty using a 

benchmark application. Chapter V discusses an attempt to optimize the cluster. Chapter 

VI provides the conclusions and recommendations for future research.  
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II. BACKGROUND 

A. CLUSTER CONCEPTS 

1. The Definition of a Cluster 

“A cluster is a widely-used term meaning independent computers combined into a 

unified system through software and networking” [3]. Clusters are most commonly used 

for High Availability (HA) for operational continuity or High Performance Computing 

(HPC) to provide greater computing power than a single machine can provide.   

One type of scalable performance cluster based on networked commodity 

hardware with open source software infrastructure is called the Beowulf cluster. The 

name Beowulf comes from the earliest surviving English poem where a hero named 

Grendel defeats a monster named Beowulf. Just as Grendle defeated the monster, 

Beowulf clusters defeat the monster we refer to as cost. In a Beowulf cluster, the user can 

increase cluster performance by simply adding more nodes. The hardware chosen to build 

the cluster can be a number of mass-market, stand-alone machines. Typically, a setup 

would consist of one server node and one or more client nodes connected via Ethernet or 

some other type of network. A Beowulf cluster does not contain custom hardware or 

other custom components and there is no single Beowulf brand hardware or software 

package.  

There are several different software packages that can be used and/or combined to 

build a Beowulf. They include Message Passing Interface (MPI), Parallel Virtual 

Machine (PVM), schedulers, the LINUX kernel, high level language libraries, and others.  

There are also several prefabricated software distributions that gather together the 

software mentioned above and can be used to create complete Beowulf clusters. 

One of the most popular Beowulf clusters consists of one main computer (head 

node or front end) and numerous slave nodes that make available their CPU. Each node is 

it own entity working in coordination with others. With a robust configuration, slave 
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nodes can usually be added and removed during operation. The head node usually has 

two network interfaces, one to communicate with users outside of the cluster and another 

to communicate with the slave nodes. Hiding the slave nodes behind the front end allow 

for extra security and user authentication. Figure 1 illustrates a simple Beowulf cluster 

consisting of one master and two slave nodes.  

 

 
Figure 1.   A simple Beowulf Cluster consisting of one master and two slave nodes. The 

master node has two network interfaces to communicate with the slave nodes and 
users outside the cluster.  

 

Although clusters can be built using a variety of operating systems, LINUX is 

usually preferred. LINUX is open source and free so there is no “per node” licensing fees 

that could get expensive, especially with larger clusters. In addition, the open source 

environment allows users to make software changes, if necessary, to optimize the 

configuration.  

2. Primary Benefits 

The primary benefits of clusters according to [4] are outlined below: 

• Absolute scalability. It is possible to have dozens of machines, each of 

which is a multiprocessor. 
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• Incremental scalability. The cluster is configured in such a way that it is 

possible to add new systems in small increments. Thus, a cluster can begin 

with a small system and increase its number of nodes without having to 

replace an older component with a newer one.  

• High availability. The failure of one node does not mean the loss of 

service unless the master node fails. 

• Superior price/performance. The cluster is constructed from commodity 

hardware. Therefore, a cluster can have equal or greater computing power 

than a single large machine at a lower cost. 

3. Cluster Classifications 

a. Classification by Hardware 

Clusters are most commonly classified by the hardware used to build it. 

Some clusters are built from components that can be found at your local computer store 

while others were specifically designed and built to be utilized in a cluster. Laptops can 

be used for experimental or instructive purposes. Often, desktop tower computers are 

stacked in rooms. Some computers such as blade servers are bought from a specific 

vendor and are intended for research or business. All of these computers have the ability 

to share peripherals with a keyboard video mouse (KVM) switch for configuration and 

trouble shooting purposes.  

b. Classification by Network Technology 

Clusters can also be classified by the type of network used to connect the 

nodes to one another. There are three common methods used to network clusters. 

(1) 10/100/1000 Base T Ethernet: The 1000 Mbps Ethernet is 

commonly referred to as Gigabit Ethernet. This is the most commonly used network 

technology in clusters and is also the network technology used in this thesis. It is 
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relatively inexpensive and has decent bandwidth. Although Ethernet’s latency is higher 

than that of Myrinet and Infiniband, it is still well suited for cluster computing.  

(2) Myrinet: Designed by Myricom [5], Myrinet is a high speed 

networking system with low overhead compared to Ethernet. This provides high 

throughput and less latency. Physically, Myrinet consists of two fiber optic cables 

(upstream and downstream) connected to the host with one connector. On the other end, 

machines are connected to low overhead routers and switches providing the connectivity.  

Myricom’s most recent network interface can reach speeds of up to 10-Gigabits per 

second. Myrinet is more expensive than Ethernet, but offers high bandwidth with low 

latency.  

(3) Infiniband: Infiniband [6] is a high performance, switched 

fabric interconnect standard for computers. Infiniband is designed for use in I/O networks 

such as data centers and clusters. Infiniband’s current limitation is 30 Gbps. 

Specifications for the Infiniband standard span multiple layers of the OSI model. The cost 

of Infiniband is also more than Ethernet, however high bandwidth is achieved with low 

latency.  

c. Classification by Cluster Size 

Clusters can be categorized from small to large based on the number of 

nodes.  

• Mini cluster: 20 nodes 

• Midsize cluster: up to 50 nodes 

• Full cluster: more than 50 nodes 

d. Classification by Shared/No Shared Resources 

According to Stallings [7], clusters can also be classified as to whether the 

individual nodes share access to the same disk.  In a “no shared disk” configuration, each 

machine within the cluster has its own disk.  In a “shared disk” configuration, the same 



 7

disk subsystem is connected to all the cluster’s nodes. Nodes using a “shared disk” 

configuration may also have their own disks installed.   

e. Classification by Cluster Architecture 

Another cluster classification, according to Stallings, is the distinction of 

separate servers, shared nothing, and shared disks.  

(1) Separate Servers: In separate servers, each node is a server with 

no shared disks among the servers. Although this offers high availability, it requires 

management or scheduling software to regulate traffic. If a node fails, another one will 

take over and complete the task. The availability is accomplished by copying data 

between the servers. The overhead of this constant data exchange ensures high 

availability but sacrifices the overall performance.  The cluster implemented in this thesis 

is separate servers. 

(2) Shared Nothing: In order to reduce communication traffic, 

servers can be connected to common disks. This is “shared nothing.” The common disks 

can be partitioned where each node utilizes one volume. In the case of a node failure, 

another node will assume ownership of the volume and the cluster will continue to run. 

(3) Shared Disk: The third approach is called “shared disk.” With 

this configuration, multiple computers share the same disk at the same time so that each 

computer has access to all the volumes of the other computers. With this case, a locking 

mechanism is required to ensure that data on the disks can only be accessed by one 

process. 

4. Cluster Operating System 

The operating system for a cluster must be specific for this special hardware 

configuration. Stallings [7] raises the following issues: 
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a. Failure Management 

There are two approaches that can be taken when dealing with failures: 

highly available clusters and fault tolerant clusters. If a failure occurs within a highly 

available cluster, another takes over. Any missing information as a result must be handled 

on the application level.  A fault-tolerant cluster stores information on redundant shared 

disks that maintain the state of the system so that it can be easily retrieved in case of 

failure and continued. 

b. Load Balancing 

A cluster requires an effective ability for load balancing. Load-balancing 

clusters run by having all workload come through one or more load-balancing front ends. 

The front ends distribute the workload to a collection of back-end servers.   

c. Parallelizing Computation 

Clusters are built primarily to provide increased performance by dividing 

or splitting computational tasks across various nodes. Such clusters commonly run 

custom programs which have been designed to exploit the parallelism available. 

According to Kapp [8] there are three unique approaches to parallelizing applications.  

The software used in this thesis uses a combination of the first two. 

(1) Parallelizing Compiler: This approach at compile time 

determines the parts of an application that can be executed in parallel. These parts are 

then split off and assigned to various nodes. Performance can vary depending on the 

compiler. 

(2) Parallelized Application: From the beginning, the programmer 

builds the application so that it can be executed by the cluster and uses message passing 

to move data between nodes. Although this can make the programming more difficult, it 

increases the performance of the cluster. 

(3) Parametric Computing: This approach is used when the 

application involves an algorithm that must be performed numerous times, each time with 
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different input conditions. Extra organization and management tools are required for the 

separate jobs in order for this method to be effective.  Parametric computing is usually 

implemented with a job scheduler, a system that allows the master node to distribute jobs 

to the slave nodes.  

B. RELATED WORK 

Although there are numerous software packages available for parallel computing, 

only implementations using Java are explored in this section.   

1. JavaParty 

JavaParty provides a port for multi-threaded Java programs to distributed 

environments, like clusters [9].   It utilizes Java’s built in Remote Method Invocation 

(RMI) library to communicate with the other nodes within the cluster. When writing Java 

code, the “remote” keyword is used to identify which objects are run remotely.  The 

JavaParty compiler then generates the appropriate machine code needed to implement 

remote method invocations.  JavaParty’s greatest advantage is that it significantly reduces 

the effort required to write a parallel Java program.  

2. Manta 

Manta [10] is a native Java compiler that compiles Java source codes to x86 

executables with a competitive goal to be faster than other current Java implementations, 

such as JavaParty. Although Manta uses a “highly efficient” RMI implementation, it does 

not have an efficient RMI package [11]. Manta supports the complete Java 1.1 language, 

including exceptions, garbage collection and dynamic class loading. Manta also supports 

some Java extensions, such as JavaParty’s “remote” keyword to identify remote classes.  

3. IceT 

IceT [12] enables users to share Java Virtual Machines (JVMs) across a network. 

Users upload classes to other JVMs using a Parallel Virtual Machine (PVM) like 

interface. By explicitly calling send and receive statements, work can be distributed 
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among multiple JVMs.  Fundamental to the IceT process model is the concept of process 

spoking, which refers to the ability of a process and its data to be uploaded to a remote 

computational resource for execution, as opposed to the common model of remote 

requests and responses. The main difference is that when a process is uploaded to a 

remote resource, it can exert independence from the requesting resource (unlike the RMI 

models), and can manage the uploading of any other processes that are necessary for the 

computation or to maintain persistent communications with other processes.  Like 

JavaParty and Manta, IceT uses divide and conquer parallelism.  

4. mpiJava 

The mpiJava distribution [13] is an object-oriented Java interface to the standard 

Message Passing Interface (MPI). It does this by providing Java wrappers, otherwise 

known as dummy classes, to a native MPI through the Java Native Interface. It does not 

assume any special extensions to the Java language.  It is “portable” to any platform that 

provides compatible Java-development and native MPI environments.  
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III. JAVAPARTY 

A. INTRODUCTION 

This chapter first presents a brief introduction to JavaParty’s communication 

mechanism, RMI. Then, a brief explanation is presented regarding the transformation 

from “JavaParty code” to pure Java with RMI. Lastly, the Hello World example program 

is used to demonstrate how to write, compile, and run applications.  

B. BACKGROUND 

RMI is a pure Java solution that allows applications to execute methods on remote 

hosts such as servers or workstations. As the name suggests, it enables applications to 

locate and execute methods of a remote interface on a remote object.  This process is 

transparent to the end user although remote hosts must have a Java Virtual machine 

installed.  Most importantly, a method invocation on a remote object has the same syntax 

as a method invocation on a local object.   

1. Java RMI Architecture 

Figure 2 illustrates the different layers of the Java RMI architecture. These layers 

are stubs and skeletons, remote reference layer, and transport layer.  

 
Figure 2.   Java RMI Architecture 

 

a. Stubs and Skeletons 

RMI uses stubs and skeletons for communicating with remote objects.  A 

stub for a remote object acts as a client's local representative or proxy for that object.  
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The caller invokes a method on the local stub which is responsible for carrying out the 

method call on the remote object. In RMI, a stub for a remote object implements the same 

set of remote interfaces that a remote object implements. 

When a stub’s method is invoked, it initiates a connection with the remote 

JVM containing the remote object and marshals (writes and transmits) the parameters.  

While the method is being invoked, the stub waits for the result.  Once the stub receives 

the result, it unmarshals (reads) the return value or exception and then returns the value 

back to the caller. The stub makes the serialization parameters and the network-level 

communication transparent to the caller in order to present a simple invocation 

mechanism to the caller.   

For each remote object, there may be a skeleton in the remote JVM.  The 

skeleton dispatches the call to the actual remote object implementation.  When a skeleton 

first receives a method invocation it first unmarshals the parameters for the remote 

method.  It then invokes the method on the actual remote object implementation before 

marshalling the result back to the caller.  

b. Remote-Reference Layer 

The remote-reference layer defines a RemoteRef interface. An 

implementation of this interface represents the link to the remote object and specifies the 

remote interaction’s call semantics. The stub stores a reference to a RemoteRef 

implementation and uses that object’s invoke() method to call remote methods. Changing 

the call semantics by using a nonstandard RemoteRef implementation is fully transparent 

to the client. 

c. Transport Layer 

The transport layer uses Java socket classes to handle communication 

between separate JVMs. Thanks to the socket-factory concept introduced in Java 1.2, the 

RMI system can use any stream-based communication. 
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2. Threads 

A thread is a software term that is short for “thread of execution.” They are a way 

for a program to split itself into two or more simultaneously running tasks. Many 

programs written today run as a single thread.  This can cause problems when multiple 

events or actions need to occur simultaneously.  Multiple threads allow seamless 

execution of two or more sections of a program at the same time.  

A method dispatched by the RMI runtime to a remote object implementation may 

or may not execute in a separate thread. The RMI runtime makes no guarantees with 

respect to mapping remote object invocations to threads. Since remote method invocation 

on the same remote object may execute concurrently, a remote object implementation 

needs to insure a thread-safe implementation.  

3. Garbage Collection 

In Java, garbage collection deletes objects that are no longer referenced by a 

client.  This eliminates the need for a programmer to keep track of the remote objects’ 

clients so that it can terminate.  RMI uses a reference-counting garbage collection 

algorithm that keeps track of live references within each JVM.  When a live reference 

enters a JVM, the count is increased; when it leaves it is decremented.  After the last 

reference has been discarded, an unreferenced message is sent to the server.  Sometimes a 

remote object is not referenced by any client.  If this occurs, the RMI runtime refers to it 

with a weak reference.  The weak reference enables the garbage collector to discard the 

object if no other local references exist.   

4. Class Loading 

Parameters, return values, and exceptions passed in RMI calls are allowed to be 

any object that is serializable. RMI utilizes object serialization to send data to and from 

virtual machines. RMI also modifies the call stream with the proper location information 

allowing class definition files to be loaded at the receiver. 
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5. Serialization 

Serialization is the mechanism used by RMI to pass objects between JVMs, either 

as arguments in a method invocation from a client to a server or as return values from a 

method invocation.  It involves saving the current state of an object to a stream, and 

restoring an equivalent object from that stream.  The stream functions as a container for 

the object.  Its contents include a partial representation of the internal structure of the 

object including variable types, names, and values.  The container may be transient 

(RAM-based) or persistent (disk-based).  A transient container may be used to prepare an 

object for transmission from one computer to another.  A persistent container, such as a 

file on disk, allows storage of the object after the current session is finished.  In both 

cases the information stored in the container can later be used to construct an equivalent 

object containing the same data as the original. 

6. Disadvantages of RMI 

The first major disadvantage involves the language of RMI.  Program size 

increases significantly when using RMI, making programming not only difficult, tedious 

and time-consuming, but also harder to manage [1].  For example, the classic program 

example, Hello World, is typically three to four lines of code using Java.  When 

implementing the same code on remote machines using RMI, two sets of code are 

needed, one for the client and one for the server.  Between both client and server codes, 

about 20 to 25 lines of code are necessary.  

The other major disadvantage is that RMI was designed for distributed 

programming and, therefore, is not really suited for parallel programming. RMI is too 

restrictive and the overhead for dealing with network problems is too verbose [1].   

C. THE JAVAPARTY PREPROCESSOR AND RUNTIME SYSTEM 

A multi-threaded Java program can be transformed into a distributed thread 

JavaParty program with little effort and no increase in size [9]. This is done by 

identifying those classes and threads that can be run on another computer. These objects 
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are identified by using a class modifier called “remote”.  This is the only extension of the 

language required. There is no need to map remote objects to a specific computer on the 

network. The compiler and runtime system assigns the objects to the various computers 

automatically. Objects that run locally are used locally without the cost of 

communication overhead.   

JavaParty is implemented as a pre-processing phase into Java compilers Espresso 

Grinder [14] and Pizza [15]. These compliers transform JavaParty code into pure Java 

with RMI hooks. The resulting code can then be compiled into machine code using a 

standard Java compiler. The JavaParty compiler, jpc, combines both steps so that 

JavaParty code is compiled right into machine code. This is illustrated in Figure 3.  

   

 
Figure 3.   The JavaParty Compiler, JPC (From [1]) 

 

The runtime system consists of a main component called RuntimeManager and a 

subcomponent called LocalJP registered at the manager.  A computer and its LocalJP can 

be added dynamically to the system.  The manager knows the location of all LocalJPs and 

class objects.  This allows the manger to know which computer implements the static part 

for each class that is loaded.  This information is stored in all LocalJPs to reduce manager 

load.  Mangers and LocalJPs do not need to know the location of remote objects.  

LocalJPs are used to call constructors in class objects and to implement both sides of a  
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migration.  Figure 4 illustrates the relationships between the manager and the LocalJPs. 

Local JPs register with the manager to create remote objects and provide their current 

state when called.  
 

 
Figure 4.   JavaParty Runtime System (From [1]) 

 
 
D. RMI ENHANCEMETS WITH JAVAPARTY 

After JavaParty was created, its developers still were not fully satisfied with the 

speed of RMI and serialization. Researchers developed a way to incorporate a more 

streamlined RMI called KaRMI. KaRMI improves the performance and flexibility of 

RMI. The basis behind KaRMI is to provide a lean and fast framework to plug in special 

purpose or optimized modules [11]. In addition, some enhancements were also made to 

the serialization process to improve its performance.  

1. RMI Improvements 

a. Clean Interfaces between Design Layers 

As with standard RMI design, KaRMI has three layers (stub/skeleton, 

reference, and transport). The outlining difference is that KaRMI has clear, distinct, 

documented interfaces between the layers [11]. This carries two advantages.   
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The first is that a remote method invocation only requires two additional 

method invocations at the interfaces between the layers and does not create temporary 

objects.  This provides clean interfaces between layers.  

The second advantage is that alternative reference and transport 

implementations can be added with ease. This is contrary to RMI in that it exposes socket 

implementation to the application level.  An example of this would be an application 

having the ability to export objects at specific port numbers.  From their level, sockets 

belong to the transport layer.  Making sockets visible at the application level means that 

RMI must use sockets at the transport layer.  When sockets are used at this layer, the 

TCP/IP framework cannot be used and this slows down performance since datagram 

based transport layers are more efficient.  The only way to fully take advantage of high 

speed networks is to separate Java’s sockets from the design of RMI.   

b. Performance Improvements  

Other performance improvements are summarized in [11] and are outlined 

below: 

• For each remote method invocation KaRMI creates only a single 

object. This significantly improves performance over RMI that 

requires approximately 25 objects or more.  Object creation in Java 

is expensive, so clean layering with fewer objects leads to 

improved performance. 

• The standard RMI uses costly calls of native code and the 

expensive reflection mechanism to find out about primitive types. 

There are two native calls per argument or non-void return value 

plus five native calls per remote method invocation. These can be 

avoided by a clever serialization. KaRMI uses native calls only for 

the interaction with device drivers.  

• In contrast to the official RMI, KaRMI's reference layer detects 

remote objects that happen to be local and short-cuts object access. 
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Of course, arguments will still be copied to retain RMI's remote 

object semantics. But, no thread switches and no communication 

are needed in KaRMI. 

• The RMI designers prefer hash-tables over other data structures. 

Hash-tables are used where arrays would be faster or where 

KaRMI can avoid them completely. Although clearing hash-tables 

is slow, the RMI code frequently and unnecessarily clears hash-

tables before handing them to the garbage collector. 

• A little slowdown is caused on some platforms by the fact that the 

RMI code contains a lot of debugging code that is guarded by 

boolean ags (binary decision diagrams). At execution time, these 

ags are actively evaluated. KaRMI does not have any debugging 

code (instead we remove the debugging code by means of a pre-

processor.) 

c. Pluggable Garbage Collection 

Although RMI’s standard garbage collector is well designed to handle 

failures associated with wide-area networks, its tolerant features reduce efficiency [11].  

When working with a closely connected cluster of computers, these features are not 

necessary and only inhibit performance.  KaRMI utilizes more efficient garbage 

collectors designed for closely interconnect networks.    

2. Serialization Improvements 

a. Reduced Type Information 

Persistent objects must be readable after being stored to disk even if the 

byte array that was originally used to create the object is no longer obtainable. Because of 

this, Java’s method of serialization, or the functionality of writing and reading byte array 

representations, includes the complete type description in the stream of bytes representing 

an object being serialized.  This is a drawback when using RMI for parallel computing 
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because this level of persistence is not required.  The lifetime of an object is shorter than 

the runtime of the job.  When objects are being sent, it is assumed that all nodes on the 

cluster have access to the same common file system.  Therefore, encoding and sending 

the type information is unnecessary. JavaParty’s method of serialization improves 

performance by using textual encoding of class names and package prefixes to improve 

performance [11].   

b. Two Forms of Reset 

To accomplish copy semantics, every new method must start with a clear 

hash-table.  This enables objects that have already been transmitted to be re-transmitted 

with their current state.  RMI can achieve this by creating a new JDK serialization object 

for each method invocation or by calling the serialization’s reset method.  The 

disadvantage of both approaches is that both clear the information and types on objects 

already transmitted.  UKA-serialization’s reset clears the objects hash table but leaves the 

type information untouched [11].  

c. Improved Buffering 

JDK-serialization has two major drawbacks concerning buffering [11]. 

The first problem is that JDK-serialization uses buffered stream implementations on top 

of TCP/IP sockets that are general and lack information about object byte representation.  

With UKA-serialization, buffering is handled internally which allows byte information to 

be exploited.  The second problem is that external buffering prevents programmers from 

directly writing into the buffers. With UKA-serialization, all necessary buffering is 

implemented itself.  The buffer has also been made public so that marshaling routines can 

expedite their data directly into the buffer. 
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E. WRITING, COMPILING, AND RUNNING APPLICATIONS 

1. Writing Applications 

a. Extended JavaParty Syntax 

As discussed, the JavaParty language extends Java with only one new 

modifier called remote.  A class declaration can be prepended with this remote modifier 

to declare a class a remote class [9]. This is shown in the following sample code. 
public remote class R { 
    /** instance variable of remote class */ 
    public int x; 
 
    /** instance method of remote class */ 
    public void foo() { ... } 
 
    /** static variable of remote class */ 
    public static int y; 
 
    /** static method of remote class */ 
    public static void bar() { ... } 
} 
 

The instances of a remote class are the "first class" members of a 

distributed JavaParty environment [9].  Even if they reside on different JVMs, they are 

able to interact with one another.  

In terms of syntax, there are no more differences between remote classes 

and non-remote classes.  Instances of remote classes are created with the remote 

keyword, and the static and non-static members can be accessed just like they are in 

regular Java. Examples of instantiating and accessing a variable of a remote class are 

given as follows. 
 
// create an instance of remote class R 
R r = new R() 
 
// access an instance variable of the created remote object 
r.x = 42; 
 
// call its method foo() 
r.foo() 
 
// access a static member of the remote class R 
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R.y = 13; 
 
// call a static method of the remote class 
R.bar(); 
 

b. Runtime System 

The instance of operator in JavaParty is used to test whether an object is to 

be an instance of a certain class at runtime.  Remote objects may be assigned to variables 

that are declared to be of type java.lang.Object [9]. This is illustrated in the following 

code.   

 
Object obj = new R(); 
 
// Test whether obj is an instance of remote class R. 
if (obj instanceof R) { ... } 
 

2. Setup 

In order to compile and eventually run JavaParty applications, the JavaParty 

distribution must be downloaded and installed.  Requirements, downloads and setup 

instructions are available from [9].   

3. Compiling Applications  

After JavaParty has been installed, Java applications written with JavaParty code 

can be compiled and tested. JavaParty programs can be compiled from any computer with 

Java SE 1.4.2 and of course JavaParty’s distribution installed.  Note that JavaParty’s 

compiler is not yet compatible with Java SE 1.5 or above. 

 To demonstrate the process, a rendition of Hello World called HelloJP provided 

by [9] will be used: 
package examples; 
 
public remote class HelloJP { 
    public void hello() { 
        // Print on the console of the virtual machine where the 
        // object lives 
        System.out.println("Hello JavaParty!"); 
    } 
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    public static void main(String[] args) { 
        for (int n = 0; n < 10; n++) { 
            // Create a remote object on some node 
            HelloJP world = new HelloJP(); 
 
            // Remotely invoke a method 
            world.hello(); 
        } 
    } 
} 

The following steps show how to compile HelloJP: 

1. Save the HelloJP source code to a file named HelloJP.java. 

2. Create a directory named classes where you wish to reside your 

application classes to.  

mkdir classes 

3. Compile the program. 

jpc -d classes HelloJP.java 

4. Running Applications 

The following steps show how to run HelloJP: 

1. From the head node, set the class path (location of compiled classes).  For 

clusters without a distributed file system, a consistent copy of all the classes with the 

same path must be copied to each machine.  

setenv CLASSPATH classes 

2. Run the JavaParty application. 

jpinvite examples.HelloJP 

Remote objects are created on the virtual machines and the output message is 

printed on the head node’s console. 

Hello JavaParty! 
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IV. PERFORMANCE MEASUREMENTS 

A. EXPERIMENTAL SETUP 

1. Hardware Configuration 

The platform used was a cluster of eight servers.  Four of the machines had AMD 

Opteron Dual-Core x86, 64-bit CPUs running at 2000 MHz.  The hostnames of these 

machines were jp-1, jp-2, jp-3, jp-4.  The other four had dual AMD Opteron Dual-Core 

x86, 64 bit processors running at 1600 MHz. The hostnames of these machines are jp-5, 

jp-6, jp-7 and jp-8.   All machines had 4 GB of RAM and 80 GB SATA hard disks.  

Table 1 summarizes the above information.  Figure 5, shown on the following page, is a 

photo of the cluster.  

 

 jp-1 to jp-4 jp-5 to jp-8 

Type Tyan Tyan 

CPU 2 GHz AMD Opteron Dual-Core 

x86, 64-bit (total two CPUs) 

Dual 2 GHz AMD Opteron Dual-Core 

x86, 64-bit (total four CPUs) 

Memory 4 GB 4 GB 

HDD 80 GB 80 GB 

NIC Two (2) gigabit Ethernet network 

adapters 

Two (2) gigabit Ethernet network 

adapters 

Table 1.   Hardware Configuration 

The internal network switch was a Cisco Catalyst 3750 gigabit Ethernet switch. 

2. Operating System 

Fedora Core 6 x86 64-bit was installed on all machines.  Fedora Core is an open 

source LINUX distribution that does not require a license.  Although JavaParty was 
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designed to work with the UNIX operating system, the LINUX command csh provides 

an enhanced but completely compatible version of the Berkeley UNIX C shell.  

 
 

Figure 5.   A photo of ECENET inside NPS’s High Performance Computing Center. 
 

3. Network Configuration 

In order to connect the cluster to the NPS network, the following information 

below was provided by the NPS network administrator.  This information was used to 

configure the external interface of the machine coordinating the parallelization of JVMs 

(head node or front end).  
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• IP address and mask of the head node connected to the external network:  

This is 209.129.248.69 with mask 255.255.255.128. Note that in LINUX 

the network interface cards (NICs) are typically named eth0 for the 

internal (private) and eth1 for the external (public). 

• Domain name server IP addresses: This is 172.20.20.11 or 170.20.20.12.  

• Host name used for the head node: This is ecenet.hpr.nps.edu. 

•  Local Gateway IP address: This is 209.129.248.1. 

NICs in the machines belonging to the cluster were assigned IP addresses in the 

5.1.1.0 network with mask 255.0.0.0. 

Figure 6 illustrates the cluster’s network configuration. The cluster is connected 

together with a gigabit switch and accessed via gateway 209.129.248.1 router.  Table 2 

provides a detailed look at the naming and addressing of hosts residing on the cluster’s 

internal network.  For example, jp-5 has ip address 5.1.1.5 and subnet mask 255.0.0.0. 

 
Figure 6.   The ECENET cluster (ecenet.hpr.nps.edu) with all the details. The host names 

of the nodes with the relevant IP addresses for the internal cluster along with the 
external network information are shown in the figure. 
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Hostname Alias Interface IP Address Mask 
ecenet.hpr.nps.edu jp-1 Private: eth0

Public:  eth1
5.1.1.1 

209.129.248.69
255.255.255.0 

255.255.255.128
Jp-2 jp-2 eth0 5.1.1.2 255.0.0.0 
Jp-3 jp-3 eth0 5.1.1.3 255.0.0.0 
Jp-4 jp-4 eth0 5.1.1.4 255.0.0.0 
Jp-5 jp-5 eth0 5.1.1.5 255.0.0.0 
Jp-6 jp-6 eth0 5.1.1.6 255.0.0.0 
Jp-7 jp-7 eth0 5.1.1.7 255.0.0.0 
Jp-8 jp-8 eth0 5.1.1.8 255.0.0.0 

Table 2.   Node Naming and IP Addressing 
 

B. BENCHMARKING 

Benchmarking is the process of characterizing the system as a whole or its various 

subsystems in order to understand either its actual or potential performance. 

Benchmarking is used, generally speaking, for three purposes: measuring overall system 

performance in order to rank-order systems, measuring subsystem performance in order 

to make better optimization choices, and before-and-after comparisons to determine if 

changes have improved the performance of the system. 

A benchmark measures the ability of a machine to execute a series of tests.  The 

results are usually recorded so that they can be used as a reference to be compared to 

other benchmark measurements.  Each time an improvement or a change is made in the 

hardware and/or the software, the benchmarking can again be completed for comparison.  

Improvements are often compared to time and/or money spent to make the 

improvements. 

Although there are many open source benchmark programs available for clusters, 

most are designed for heterogeneous clusters utilizing an MPI.  The JavaParty website [9] 

provides a handful of benchmarks which were all compiled and run.  After examining 

some preliminary results, it was concluded that most of these benchmarks ran too quick 

to notice any significant improvements with the cluster.  This was most likely due to the 

fact that these benchmarks were designed to run on machines from the late 90s.  Despite  
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disappointment with not being able to utilize most of the benchmarks, one, named 

RayTracer, presented a more consistent, longer run time offering a more precise and 

accurate benchmark.   

Ray tracing is a technique used to model the path taken by light by following the 

rays of light as they interact with optical surfaces.  The RayTracer benchmark creates a 

scene and then measures the performance of a 3D ray tracer.  The scene contains 

numerous spheres rendered in high resolution.  The outermost loop (over rows of pixels) 

has been parallelized using a cyclic distribution for load balance.  After the program 

completes, the elapsed time is shown.   

The RayTracer JavaParty code was downloaded from [9]. It was then compiled 

using jpc and run using jpinvite.  Figure 7 is a screenshot of the terminal window 

running the RayTracer benchmark. 

 

 
 

Figure 7.   RayTracer Benchmark Screenshot 
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The test was run 50 consecutive times with  two machines, three machines, four 

machines, six machines and eight machines.  The mean and standard deviation of the 

elapsed time for each set was computed.  The results are summarized in Table 3 and are 

shown in Figure 8.  It is apparent from these results that the speed-up of RayTracer is 

relative to the number of machines included in the execution. Comparing the mean 

execution times, adding two more machines to the original two decreased the execution 

time significantly from 73.79 seconds to 50.78 seconds. Adding six machines to the 

original two (total eight machines) decreased the run time to 21.45 seconds.  

 

Number of Machines 2  3 4 6 8 
Mean elapsed time (sec) 73.79 50.78 38.10 27.12 21.45 

Σ 29.09 18.08 8.82 6.01 3.28 
Table 3.   RayTracer Benchmark Results Summary 

 
 

 
Figure 8.   Execution Times for RayTracer Benchmark 

 

While running the experiment, it was noticed that some of the CPUs configured to 

run did not always run. For example, if jp-1 and jp-2 were configured to run RayTracer, 

occasionally only jp-1’s CPU would partake in the execution of the program.   Due to this 
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occurrence, the standard deviation was higher than expected, especially for the execution 

times using fewer machines. Although the specific reasons why this happened go beyond 

this thesis, a request to the developers of JavaParty was made to provide a brief answer 

and no response was received. 
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V. OPTIMIZING CLUSTER PERFORMANCE 

A. INTRODUCTION 

It is now apparent that running Java applications using multiple virtual machines 

provides a significant time advantage to the user.  Many users, however, may not have 

access to a cluster on a congestion-free network.  This chapter attempts to evaluate the 

performance of the cluster running the same RayTracer benchmark, only this time with 

network congestion.   In addition, an attempt is made to prioritize JavaParty’s network 

traffic using a Cisco Catalyst 3750 Ethernet switch to improve the benchmark mean 

execution run time. 

B. JAVA PARTY TRAFFIC ANALYSIS 

In order to understand and remedy the negative impact of network congestion, it 

is first important to have a thorough understanding of the different traffic types and flow 

patterns associated with JavaParty’s communication mechanism.  To do this, the network 

protocol analyzer Ethereal was utilized.   

Two ports on the Cisco Catalyst 3750 Ethernet switch were configured to 

replicate the ports connecting jp-1 and jp-2.  While running the RayTracer benchmark, 

network traffic flowing in and out of jp-1 and jp-2 was simultaneously captured using 

Ethereal.  From the data capture, the protocols and flow patterns were examined. 

From the transport layer perspective, all traffic generated by the JavaParty 

runtime system was Transmission Control Protocol (TCP).  Using TCP guarantees that 

all JavaParty traffic moving within the cluster’s internal network reaches its destination in 

the correct order with no errors.   

Ethereal identified five types of TCP traffic: low level control/acknowledgment 

(control/ACK), Secure Shell (SSH), short frame, data, and RMI. Control/ACK traffic is 

used to ensure proper packet delivery. SHH is an application layer protocol “on top” of 

TCP that allows data to be exchanged securely between two computers. Packets 
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identified as short frame, or truncated (Ethereal often truncates large packets), are usually 

for carrying large amounts of data. Along with most short frame packets, data packets are 

also used to transport data. The Java RMI protocol is the Java technology-specific 

protocol for looking up and referencing remote objects. Like SSH, it is an application 

level protocol running under the RMI layer and over TCP.   

From the data capture, statistics were collected regarding each type of traffic. 

Figure 9 illustrates the percentage of each type of packet captured. The majority were 

Control/ACK and SSH packets. There were only 15 RMI packets captured.  

Number of Packets

Control/ACK
65,664

SSH
61,226

Short Frame
27,020

Data
18,416

RMI
15

 
Figure 9.   Number of packets for one execution of RayTracer using 4 hosts. 

 

Figure 10 graphs mean packet length for each traffic type. From the graph it is 

seen that control/ACK packets are smaller in size and short frame and data packets are 

larger. Control/ACK packets are smaller because they are not carrying actual data. Data 

packets attempt to maximize data transfer with as little overhead as possible. 
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Figure 10.   Mean packet length for one execution of RayTracer using 4 hosts. 

 

To understand how the JavaParty runtime system loads the cluster’s internal 

network, a running average of the bit rates for each type of JavaParty traffic was plotted.  

Data used to create the first set of plots (Figures 11 through 14) was captured from the jp-

1’s Ethernet port during an execution of RayTracer using four hosts. This data comprises 

traffic moving to and from the head node to all other nodes in the cluster. The second set 

of plots (Figures 15 through 18) used data captured from jp-2’s Ethernet port. This data 

represents data moving to and from a slave node. Due to the relatively small number of 

RMI packets in the capture, the RMI plots are not shown.  

Figures 11 and 15 show low level control/ACK traffic for both the head and slave 

nodes. The relatively lower but consistent bit rates plotted are reflective of typical 

control/ACK traffic. Due to smaller packet sizes, bit rates are lower while the flow is 

consistent due to continuous traffic control. For similar reasons SSH traffic, shown in 

Figures 12 and 16, has a similar plot to control/ACK traffic except these packets are 

encrypting rather than controlling.  
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Data flow can be observed in Figures 13, 14, 17, and 18. Although the short frame 

traffic remains consistent, spikes in data traffic can be observed. Similar but smaller 

spikes can be observed in the control/ACK and SSH packets. These small spikes show 

that extra control/ACK and SSH packets are needed during times of increased data flow.   

 
Figure 11.   Plot of head node low level control/ACK bit rate for one execution of 

RayTracer using four hosts.  
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Figure 12.   Plot of head node SSH bit rate for one execution of RayTracer using four 

hosts. 
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Figure 13.   Plot of head node short frame bit rate for one execution of RayTracer using 

four hosts. 
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Figure 14.   Plot of head node data bit rate for one execution of RayTracer using four 

hosts.  
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Figure 15.   Plot of slave node low level control/ACK bit rate for one execution of 

RayTracer using four hosts. 
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Figure 16.   Plot of slave node SSH bit rate for one execution of RayTracer using four 

hosts. 
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Figure 17.   Plot of slave node short frame bit rate for one execution of RayTracer using 

four hosts. 
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Figure 18.   Plot of slave node data bit rate for one execution of RayTracer using four 

hosts. 
 

C. OPTIMIZING JAVA PARTY IN A CONGESTED NETWORK 

1. Congesting the Network 

In order to evaluate how JavaParty applications respond to a congested network, 

congestion was simulated by bombarding each machine with User Datagram Protocol 

(UDP) packets. UDP was used because it is a core protocol of the Internet Protocol (IP) 

suite and it does not guarantee arrival or ordering like, for example, TCP.  This insured 

that each trial was similar in that extra traffic was not generated due to the randomness of 

lost packets or collisions.   

Because half of the machines were needed to generate the congestion, the 

experiments in this segment were limited to four machines. The experiment was 

performed so that the machines running RayTracer (jp-1, jp-2, jp-3 and jp-4) were 

simultaneously bombarded with UDP packets by jp-5, jp-6, jp-7 and jp-8 respectively.  

The traffic was generated using a program called D-ITG 2.4 [16]. To keep the traffic at a 
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consistent rate, a constant packet inter-departure time was configured. In addition, the 

packets were sent at the maximum inter-departure rate and maximum size (1400 Byte 

payload).  Figure 19 shows a screen capture of the D-ITG packet generator software 

configured to bombard jp-1 (5.1.1.1). 

 

 
 

Figure 19.   The D-ITG GUI configured to bombard jp-1 (5.1.1.1). 
 

RayTracer was run again 50 consecutive times using four machines, this time 

with congestion. The results are shown in Table 4. The average time it took to run the 

benchmark was dramatically slower compared to the first trial done without congestion. 

After adding congestion, the RayTracer benchmark takes on average an additional 19.8 

seconds to run. The cause of the slowdown in most likely due to the following: 

• First in first out (FIFO) priority on all packets (including UDP packets) 

• Buffers on the switch reaching capacity and dropping packets 

• Decreased CPU availability on machines due to handling of incoming 

UDP packets 

The standard deviation also increased indicating individual trials were wider 

spread and varied more from the mean.   
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 No congestion With congestion Difference 
Mean elapsed time (sec) 38.10 57.90 19.8 

Σ 8.82 11.83 3.01 
Table 4.   RayTracer benchmark results using 4 machines.  Execution times are 

slower with generated congestion 
 

2. Improving Cluster Performance with QoS 

In some cases avoiding network congestion may be inevitable, and as it was 

shown in the previous section, it can significantly hinder performance.  One example of 

this type of situation is a LINUX cluster interconnected with a network that is also 

utilized by other users.  Cisco advertises that the Catalyst 3750 switch offers features and 

benefits that can increase performance in congested LINUX cluster environments [17]. In 

this section, the capabilities of the switch are determined and applied with an objective to 

improve the mean execution time of RayTracer with network congestion.  

Typically, networks run on the best-effort, FIFO delivery basis.  This means that 

all network traffic has equal priority with an equal chance of being dropped. The Cisco 

Catalyst 3750 has the capability to police and prioritize traffic using QoS (Quality of 

Service). To implement QoS, the switch classifies the network traffic according to a 

profile created by the user. Incoming traffic to the switch can be classified with a CoS 

(Class of service) value in the ISL/802.1Q/802.1p frame (Layer 2) or with an IP 

precedence or DSCP (Differentiated Services Code Point) in the ToS (Type of Service) 

field located in the IP packet header (Layer 3).  CoS and IP precedence values range from 

zero to seven, seven being the highest priority. DSCP values range from zero to 63, 63 

being the highest priority. Figure 20 illustrates QoS classification layers in frame and 

packets. For example, three bits are used for CoS in the ISL (Inter-Switch Link) frame 

and one byte of IP precedence is used for the IPv4 packet.  
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Figure 20.   QoS Classification layers in frames and packets (From [2]) 

 

After the packets have been classified, they are policed to determine whether they 

are in or out of profile. A policer has the ability to adjust bandwidth consumed by traffic 

before passing the result to the marker.  The marker considers information passed by the 

policer and the QoS profile in making the decision on what to do with the packet. The 

marker can either drop the packet or allow it to pass through to the ingress queues. 

During this decision, the marker also modifies the contents of the CoS and ToS values 

inside the frame or packet header in accordance with the QoS profile. Once the packet 

arrives at the ingress queue, queuing and scheduling moves the packet through the 

remainder of the switch. Figure 21 illustrates this process in a basic QoS model. It is 

divided into two sections, actions at ingress for incoming packets and actions at egress 

for outgoing packets.  
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Figure 21.   Basic QoS Model (From [2]) 

 

The Catalyst 3750 has two ingress queues that queue packets for entry. The QoS 

profile can specify the specific queue to handle packets of different Cos or ToS values. 

The two ingress queues are outfitted with a weighted tail-drop (WTD) algorithm to avoid 

congestion. When the threshold for a particular class of packet specified is exceeded, the 

packets are dropped. The switch’s scheduling mechanism services the queues based on 

shaped round robin (SRR) weights also specified in the QoS profile. The SRR weights 

determine the frequency at which the switch services the ingress queues. In addition, one 

of the ingress queues is considered the priority queue. SRR services the priority queue for 

its configured share before servicing the other queue.  

Similarly, when a packet arrives at the egress queue, the packet’s QoS label and 

CoS value decide which egress queue out of the four will be used. The egress queues use 

the same WTD and SRR weight concepts as the ingress queues in determining packet 

drops and scheduling. The first egress queue (Queue 1) can be configured as the 

expedited queue.  This queue is emptied before the other queues are serviced.  

3. Configuring QoS 

a. Classifying Traffic 

With a clear understanding of JavaParty’s protocols and flow patterns, the 

decisions involved with classifying the traffic became trivial: assign JavaParty traffic a 

higher priority than the generated traffic causing the congestion. To implement this idea, 
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a method was needed to isolate JavaParty traffic from as much other traffic as possible. 

The Catalyst 3750 offers a number of ways of doing this.  Packets can be classified solely 

by host, destination, or IP protocol type or any combination of these three unique 

identifiers.  Since all JavaParty traffic is TCP and only exists between JP-1, JP-2, JP-3 

and JP-4, a policy was created that changed the DSCP value of each IP header to 40 

given this occurrence. It would have been preferred to further prioritize the JavaParty 

TCP traffic at the application level. However, since the switch is only able to prioritize 

traffic at the transport layer, this could not be done.  All other packets defaulted to DSCP 

value 0 (routine traffic). 

b. Queuing and Scheduling Configuration 

Since there are two ingress queues on the Catalyst 3750 (Queue 2 being 

priority), it was again trivial to send JavaParty traffic through Queue 2. Queue two was 

configured to handle DSCP levels 40-47.  

If JavaParty traffic and routine traffic used the same queue, WTD 

thresholds could be set to keep the JavaParty traffic and drop the routine traffic 

overloading the queue. Because JavaParty traffic uses an entirely different queue than 

routine traffic, there was no need to configure special WTD thresholds. 

Since Queue 1 was handling the majority of traffic, 85% of the buffer 

space was allocated to it. By default, this left a generous 15% of the buffer space 

bandwidth to Queue 2 handling solely JavaParty traffic. In addition, SRR bandwidth 

weights were configured to allocate Queue 2 the maximum amount of bandwidth 

available when JavaParty traffic was present.   This was done by setting Queue 2 as the 

priority queue which guaranteed bandwidth in the presence of congestion.  

A similar configuration was setup on the four egress queues. Queue 1 was 

configured to accept packets only with DSCP 40-47.  A generous 15% of the buffer space 

was allocated to Queue 1 handling JavaParty traffic and 65% to Queue 2 handling the 

routine traffic. The rest of the buffer space was split evenly between the last two queues. 

Just like the ingress queues, the egress queue’s SRR bandwidth weights were configured 

to allocate Queue 1 the maximum amount of bandwidth available when JavaParty traffic 
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was present. In addition, Queue 1 was configured as the expedite queue. The expedite 

queue is serviced and emptied before servicing any other queue.  

4. RayTracer Revisited 

To test the QoS profile created for the cluster, RayTracer with four hosts was used 

again as a Benchmark. To ensure that the profile was not hindering the cluster’s 

performance, the benchmark was run with the QoS profile and no congestion so it could 

be compared to the mean execution time with no profile and no congestion. The mean 

runtime increased slightly to 40.05 seconds, a 1.95 second increase. Since the standard 

deviation was high for the execution times revealed in the previous chapter, this increase 

is not significant enough to associate the slow down with the profile.  

With the QoS profile still in place, RayTracer was run another 50 times with 

added network congestion. The profile decreased the execution time from 57.90 seconds 

to 44.07 seconds, a significant decrease in time.  

With no network congestion, the mean run time with the QoS profile was only 

1.95 seconds from the mean run time with no QoS profile. When network congestion was 

added, the QoS improved RayTracer’s mean execution time by 13.83 seconds, a 

significant and notable improvement. The results are summarized in Table 5 and shown 

in Figure 22.  

 

 No 
congestion, 

No QoS 

With 
congestion,

No QoS 

No 
congestion, 

w/ QoS  

With 
congestion, 

w/ QoS 
Mean elapsed time (sec) 38.10 57.90 40.05 44.07 

Σ 8.82 11.83 9.37 8.91 
Table 5.   RayTracer benchmark results using four machines and a QoS profile. The 

QoS profile significantly decreases the RayTracer mean runtime in the presence 
of generated network congestion. 
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Figure 22.   A comparison of RayTracer execution times under different testing 

conditions. The chart illustrates the time lost due to network congestion, and how 
the QoS profile prioritized cluster traffic to reduce execution time. 
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VI. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 

The research completed in this thesis showed that when implementing a parallel 

Java system using JavaParty, faster program execution times can be achieved by adding 

additional JVMs. In the presence of network congestion, a QoS profile can be configured 

with the cluster interconnect to prioritize JavaParty traffic between the nodes 

significantly increasing performance. 

This research also verified that JavaParty is truly an elegant way to implement a 

cluster with Java. The code of JavaParty parallel programs are significantly shorter and 

less complex than RMI based parallel programs making them easier to work with. Also 

compared to traditional RMI, JavaParty programs also adapt more flexibly to various 

network conditions and can exploit locality. JavaParty’s enhanced runtime system and 

serialization is faster and more efficient compared with Java’s standard environment 

providing a more suited service for a closely connected cluster. 

Finally, this research delivered a “product” to the advanced networking laboratory 

that provides a less tedious method and a more powerful platform to parallelize and run 

Java applications. To comment on building the cluster, implementation required 

significant LINUX and UNIX expertise. Anyone setting up a LINUX cluster should also 

be familiar with the accompanying tools and utilities of the LINUX OS. It is difficult for 

a person not experienced in UNIX to accomplish a completely correct installation. 

Solutions for problems are not always instantly available and time has to be spent 

searching several resources. The manuals do not cover all possible problems.  

B. FUTURE WORK 

As described in the related work portion of this thesis, there are other alternatives 

to implementing fast parallel Java that may be faster then JavaParty. Some of these 

options may be worth exploring although JavaParty seems to be an efficient choice when 

considering the investment of time spent programming. The trade-off lies between cluster 

performance and ease of programming.  
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For now, the cluster is configured and ready to run parallel JavaParty applications. 

The advanced networking laboratory plans on using the cluster for network protocol 

simulation and research concerning mobile ADHOC and sensor networks. Having the 

cluster available as a tool will significantly improve research productivity.   
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APPENDIX A 

Recorded RayTracer execution times for the various configurations discussed are 

included in this appendix.  

1. RayTracer Execution Times (From Chapter IV) 

The following table includes the data obtained by running RayTracer. The first 

column shows the times when only two hosts were used. The next column includes three 

hosts, and etcetera. 

Trial # jp-1 – 2 jp-1 -3 jp-1 - 4 jp-1 - 6 jp-1 -8 
1 95.35 44.10 33.87 24.15 22.63 
2 123.48 34.83 32.29 20.74 16.30 
3 47.94 50.96 32.29 21.62 18.62 
4 85.39 49.52 30.76 26.28 19.53 
5 94.74 34.91 44.23 20.99 19.38 
6 102.41 48.11 44.78 21.36 16.75 
7 48.86 49.39 49.33 34.17 18.37 
8 50.65 44.80 35.55 33.79 20.07 
9 45.62 32.62 32.85 27.16 25.64 
10 93.77 91.25 33.41 22.90 18.45 
11 96.92 44.98 47.54 35.30 18.80 
12 48.99 46.14 33.60 27.38 17.98 
13 124.22 45.94 51.02 22.36 23.63 
14 47.27 94.31 50.53 26.00 27.13 
15 47.45 50.17 52.17 21.41 22.46 
16 96.24 51.05 31.72 27.17 24.62 
17 45.69 48.40 33.83 25.78 17.96 
18 49.93 32.90 46.17 28.86 23.30 
19 47.11 48.69 25.08 21.30 27.01 
20 86.96 33.90 32.62 26.39 22.38 
21 48.11 46.81 47.51 21.35 25.18 
22 122.87 46.91 33.93 27.69 24.69 
23 48.63 46.31 33.03 27.33 15.65 
24 45.11 50.20 34.46 18.57 26.43 
25 122.01 91.09 32.09 26.10 23.73 
26 46.36 45.80 30.86 33.12 25.36 
27 121.40 47.21 25.98 21.56 24.52 
28 50.38 50.00 54.97 34.33 22.37 
29 45.19 46.15 49.35 33.45 16.24 
30 46.87 50.37 30.48 28.33 17.71 
31 88.21 34.02 48.14 26.83 20.75 
32 104.56 33.63 33.70 25.63 19.45 
33 47.36 32.57 55.31 36.33 22.11 
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34 92.92 49.07 44.46 26.83 19.27 
35 107.60 45.56 33.34 26.02 18.19 
36 48.28 33.06 32.50 23.86 25.44 
37 49.14 45.90 33.21 34.91 24.46 
38 45.97 46.16 34.88 27.07 20.90 
39 49.80 48.72 33.21 22.18 18.58 
40   49.05 25.65 17.69 25.73 
41 50.06 48.36 31.98 25.84 20.44 
42 52.65 50.52 48.33 26.65 21.19 
43 95.07 47.66 25.15 52.48 22.46 
44 125.67 50.16 32.40 33.80 21.74 
45 51.39 124.70 53.97 26.64 17.43 
46 88.98 48.08 31.91 20.53 21.65 
47 49.09 52.31 33.33 28.22 28.59 
48 111.95 56.18 35.10 25.51 17.91 
49 88.81 98.59 57.93 35.11 21.29 
50 92.04 46.95 34.30 26.93 21.95 
Avg 73.79 50.78 38.10 27.12 21.45 
σ 29.09 18.08 8.82 6.01 3.28 

 

2.  RayTracer Execution Times (From Chapter V) 

The first set of data is with the QoS profile enabled but with no generated traffic. 

The second case is with generated traffic but no QoS profile. The third case is with QoS 

enabled with generated traffic. 
Trial 
# 

w/ QoS, 
no traffic 

No QoS, w/ 
traffic 

w/ QoS, 
w/ traffic

1 37.49 72.76 34.82 
2 50.85 56.89 37.13 
3 38.48 60.45 56.60 
4 49.62 56.35 30.82 
5 47.37 60.79 56.50 
6 38.88 69.32 40.25 
7 33.58 59.97 37.62 
8 25.00 52.78 46.37 
9 43.53 76.23 43.79 
10 38.72 64.88 36.74 
11 32.63 44.86 46.57 
12 38.34 49.93 50.56 
13 32.92 82.22 48.92 
14 60.19 52.95 62.28 
15 45.92 62.86 43.65 
16 45.86 48.68 50.92 
17 46.28 70.56 39.40 
18 54.38 57.32 32.31 
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19 37.40 76.01 57.07 
20 34.65 50.64 52.48 
21 40.41 44.58 36.79 
22 26.47 42.31 48.85 
23 48.11 66.25 51.92 
24 25.41 41.63 47.92 
25 26.12 45.20 54.11 
26 50.26 72.42 62.35 
27 33.88 64.16 37.70 
28 32.38 58.88 29.20 
29 51.66 59.23 42.60 
30 37.25 58.49 29.69 
31 34.68 49.15 39.03 
32 36.25 48.91 49.22 
33 37.00 59.83 37.33 
34 32.65 43.18 45.42 
35 46.38 42.45 45.24 
36 46.83 34.52 36.48 
37 33.04 67.74 39.72 
38 31.37 55.94 37.14 
39 59.23 63.62 56.67 
40 37.75 45.32 42.10 
41 43.32 34.19 63.34 
42 33.55 54.20 46.85 
43 33.29 44.64 50.76 
44 60.59 79.94 37.68 
45 49.58 54.12 43.99 
46 29.74 75.10 47.49 
47 25.52 59.81 30.48 
48 31.48 64.87 34.53 
49 51.03 87.82 38.45 
50 44.99 50.28 35.42 
Avg 40.05 57.90 44.07 
σ 9.37 11.83 8.91 
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APPENDIX B 

This appendix includes the QoS configuration of the Cisco Catalyst 3750 switch 

used to improve cluster performance with generated traffic. 

1. Cisco Catalyst 3750 Running Configuration 

Switch#show access-lists                         
Current configuration : 4691 bytes 
! 
version 12.1 
no service pad 
service timestamps debug uptime 
service timestamps log uptime 
no service password-encryption 
! 
hostname Switch 
! 
! 
ip subnet-zero 
! 
mls qos srr-queue input bandwidth 1 99 
mls qos srr-queue input buffers 70 30 
mls qos srr-queue input priority-queue input 2 bandwidth 40 
mls qos queue-set output 2 threshold 1 400 400 100 400 
mls qos queue-set output 2 threshold 2 40 60 100 200 
mls qos queue-set output 2 buffers 50 40 5 5 
mls qos 
! 
class-map match-all class134 
 match access-group 134 
class-map match-all class143 
  match access-group 143 
class-map match-all class124 
  match access-group 124 
class-map match-all class142 
  match access-group 142 
class-map match-all class114 
  match access-group 114 
class-map match-all class141 
  match access-group 141 
class-map match-all class112 
  match access-group 112 
class-map match-all class121 
  match access-group 121 
class-map match-all class113 
  match access-group 113 
class-map match-all class131 
  match access-group 131 
class-map match-all class123 
  match access-group 123 
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class-map match-all class132 
  match access-group 132 
! 
! 
policy-map police-jp 
  class class112 
    set ip dscp 40 
  class class113 
    set ip dscp 40 
  class class114 
    set ip dscp 40 
  class class121 
    set ip dscp 40 
  class class123 
    set ip dscp 40 
  class class124 
    set ip dscp 40 
  class class131 
    set ip dscp 40 
  class class132 
    set ip dscp 40 
  class class134 
    set ip dscp 40 
  class class141 
    set ip dscp 40 
 class class142 
    set ip dscp 40 
  class class143 
    set ip dscp 40 
! 
! 
spanning-tree mode pvst 
no spanning-tree optimize bpdu transmission 
spanning-tree extend system-id 
! 
! 
interface GigabitEthernet1/0/1 
 no ip address 
 srr-queue bandwidth share 97 1 1 1 
 queue-set 2 
 priority-queue out 
 service-policy input police-jp 
 no mdix auto 
! 
interface GigabitEthernet1/0/1.24 
 srr-queue bandwidth share 97 1 1 1 
 queue-set 2 
 priority-queue out 
! 
interface GigabitEthernet1/0/2 
 no ip address 
 srr-queue bandwidth share 97 1 1 1 
 queue-set 2 
 priority-queue out 
 service-policy input police-jp 
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 no mdix auto 
! 
interface GigabitEthernet1/0/3 
 no ip address 
 srr-queue bandwidth share 97 1 1 1 
 queue-set 2 
 priority-queue out 
 service-policy input police-jp 
 no mdix auto 
! 
interface GigabitEthernet1/0/4 
 no ip address 
 srr-queue bandwidth share 97 1 1 1 
 queue-set 2 
 priority-queue out 
 service-policy input police-jp 
no mdix auto 
! 
interface GigabitEthernet1/0/5 
 no ip address 
 no mdix auto 
! 
interface GigabitEthernet1/0/6 
 no ip address 
 no mdix auto 
! 
interface GigabitEthernet1/0/7 
 no ip address 
 no mdix auto 
! 
interface GigabitEthernet1/0/8 
 no ip address 
 no mdix auto 
! 
interface GigabitEthernet1/0/9 
 no ip address 
 no mdix auto 
! 
. 
. 
. 
. 
. 
! 
interface Vlan1 
 no ip address 
 shutdown 
! 
ip classless 
ip http server 
! 
access-list 100 permit ip any any 
access-list 112 permit ip host 5.1.1.1 host 5.1.1.2 
access-list 113 permit ip host 5.1.1.1 host 5.1.1.3 
access-list 114 permit ip host 5.1.1.1 host 5.1.1.4 
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access-list 121 permit ip host 5.1.1.2 host 5.1.1.1 
access-list 123 permit ip host 5.1.1.2 host 5.1.1.3 
access-list 124 permit ip host 5.1.1.2 host 5.1.1.4 
access-list 131 permit ip host 5.1.1.3 host 5.1.1.1 
access-list 132 permit ip host 5.1.1.3 host 5.1.1.2 
access-list 134 permit ip host 5.1.1.3 host 5.1.1.4 
access-list 141 permit ip host 5.1.1.4 host 5.1.1.1 
access-list 142 permit ip host 5.1.1.4 host 5.1.1.2 
access-list 143 permit ip host 5.1.1.4 host 5.1.1.3 
! 
line con 0 
line vty 5 15 
! 
! 
monitor session 1 source interface Gi1/0/1 
monitor session 1 destination interface Gi1/0/21 encapsulation replicate 
monitor session 2 source interface Gi1/0/2 
monitor session 2 destination interface Gi1/0/22 encapsulation replicate 
end 
 

2. QoS Access Lists 

Switch#show access-lists                         
Extended IP access list 100 
    permit ip any any 
Extended IP access list 112 
    permit ip host 5.1.1.1 host 5.1.1.2 
Extended IP access list 113 
    permit ip host 5.1.1.1 host 5.1.1.3 
Extended IP access list 114 
    permit ip host 5.1.1.1 host 5.1.1.4 
Extended IP access list 121 
    permit ip host 5.1.1.2 host 5.1.1.1 
Extended IP access list 123 
    permit ip host 5.1.1.2 host 5.1.1.3 
Extended IP access list 124 
    permit ip host 5.1.1.2 host 5.1.1.4 
Extended IP access list 131 
    permit ip host 5.1.1.3 host 5.1.1.1 
Extended IP access list 132 
    permit ip host 5.1.1.3 host 5.1.1.2 
Extended IP access list 134 
    permit ip host 5.1.1.3 host 5.1.1.4 
Extended IP access list 141 
    permit ip host 5.1.1.4 host 5.1.1.1 
Extended IP access list 142 
    permit ip host 5.1.1.4 host 5.1.1.2 
Extended IP access list 143 
    permit ip host 5.1.1.4 host 5.1.1.3 

3. QoS Class Maps 

Switch#show class-map                      
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 Class Map match-any class-default (id 0) 
   Match any 
 Class Map match-all class134 (id 10) 
   Match access-group  134 
 
 Class Map match-all class143 (id 13) 
   Match access-group  143 
 
 Class Map match-all class124 (id 7) 
   Match access-group  124 
 
 Class Map match-all class142 (id 12) 
   Match access-group  142 
 
 Class Map match-all class114 (id 4) 
   Match access-group  114 
 
 Class Map match-all class141 (id 11) 
   Match access-group  141 
 
 Class Map match-all class112 (id 2) 
   Match access-group  112 
 
Class Map match-all class121 (id 5) 
   Match access-group  121 
 
 Class Map match-all class113 (id 3) 
   Match access-group  113 
 
 Class Map match-all class131 (id 8) 
   Match access-group  131 
 
 Class Map match-all class123 (id 6) 
   Match access-group  123 
 
 Class Map match-all class132 (id 9) 
   Match access-group  132 

4. QoS Policy Maps 

Switch>show policy-map                       
 Policy Map police-jp 
  class  class112 
   set ip dscp 40 
  class  class113 
   set ip dscp 40 
  class  class114 
   set ip dscp 40 
  class  class121 
   set ip dscp 40 
  class  class123 
   set ip dscp 40 
  class  class124 
   set ip dscp 40 
  class  class131 
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   set ip dscp 40 
  class  class132 
   set ip dscp 40 
  class  class134 
   set ip dscp 40 
  class  class141 
   set ip dscp 40 
  class  class142 
   set ip dscp 40 
  class  class143 
   set ip dscp 40 
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