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ABSTRACT

Spoofing is the common term used for describing the intentional broadcasting of

false radio frequency signals intended to disrupt and mislead systems that depend

on accurate position, navigation, and timing information provided by the Global

Positioning System (GPS). Spoofing is an increasingly recognized threat which is

garnering increased interest from researchers and users, both military and civilian.

This thesis presents a novel GPS spoof detection algorithm that exploits the

geometric distribution of a horizontal array of GPS antenna-receivers and the

geometric configuration of visible navigation satellites. Using a Neyman-Pearson

hypothesis testing formulation, a spatial correlation test is developed that can

accurately and dependably detect a GPS spoofing scenario. Analysis is conducted

showing the performance effects of the number of receivers used, internal receiver

clock bias estimation, and temporal and spatial locations of the detector.

Simulations were conducted using theoretical definitions of false alarm and de-

tection probabilities, a GPS simulator and receiver combination, and a live-sky

experimental set-up. Experimental and theoretical performance results are pre-

sented.
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CHAPTER 1

Introduction

1.1 Goal

The goal of this thesis is to develop and analyze an algorithm for detecting GPS

spoofing attacks using pseudoranges outputted from an array of commercial-off-

the-shelf GPS antenna-receiver combinations.

1.2 Motivation

This research is motivated by the need to develop noninvasive, inexpensive, and

inter-operable software GPS spoof detectors.

A software detector is a desirable solution because of its relative ease of imple-

mentation and interoperability with legacy equipment. A laptop pre-loaded with

required software could be connected to any commercial-off-the-shelf GPS receiver

that outputs the requisite data and an instant spoof detector would be deployed.

It is easily recognized that this form of detection solution would save considerable

costs in development and installation versus a hardware based detector.

Prior work on this subject provides many promising detection solutions at all stages

of the receiver data processing operation. Many of these detection methods involve

extracting data from receivers in an intrusive manner that would compromise the

integrity of legacy or certified systems in active use. Figure 1 presents a simplified

depiction of information transformation as it flows through a GPS receiver. A

spoof detector could work with RF data directly [4],[5]. At the other extreme, the

detector could use position solution data [6] [7]. An alternate and middle-ground
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possibility is a detector based on pseudorange data. Pseudorange measurements

are readily available from most mid-upper range receivers through standard ASCII

or NMEA code outputs, and thus satisfy the need for non-invasive data extraction.

The choice of pseudorange measurements is not an arbitrary one. Ease of access

has its drawbacks; it is expected that performance is inversely correlated to the

complexity of data extraction. A hypothetical performance comparison is shown

graphically in Figure 2. This figure plots probability of detection (PD) versus

probability of false alarm (PFA). While described in more detail later in this

thesis, at this moment we note that the closer a performance curve is to the to the

upper left corner the better. A detector based on the received RF, while harder to

implement, should have the best performance because the RF data represents the

complete data set. The position solution is a much reduced version of the received

signal; it presents the worst performing detector in that much of the detail in the

RF is ’averaged’ away. Thus, it is expected that pseudorange detection methods

will provide better performance than methods using position solutions; developing

a pseudorange detector is the next logical step in both complexity and performance.

The algorithm presented in this thesis is designed to satisfy all of the above moti-

vating factors.
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Figure 1: GPS Receiver Information Flow

Figure 2: Hypothetical performance by data extraction point

1.3 Thesis Organization

This thesis conducts background discussions of the Global Navigation Systems

(GPS) constellations, GPS spoofing and spoofing detection, navigation charac-

teristics of the Global Positioning System, COTS receiver data processing, and

random processes to support the techniques used for development of this test.
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We will start by framing the problem and discussing some background information

in Chapter 2. Chapter 3 provides the notation and conceptual development of the

test. The testing and simulation methodologies are presented in Chapter 5 and

followed by the performance evaluations of all the tests in Chapter 6. Finally, a

discussion of conclusions and future work is presented in Chapter 7. Appendices

A and B provide detailed derivations of the formulas used and detailed hardware

and software configuration notes.
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CHAPTER 2

Background Research

2.1 Global Navigation Satellite Systems

Global Navigation Satellite Systems (GNSS) are critical to modern electronic nav-

igation and global economic infrastructure. Currently operable GNSS include the

American GPS (Global Positioning System) and the Russian GLONASS (Global

Navigation Satellite System), but there are a variety of other programs under de-

velopment including the European Union’s Galileo and China’s Beidou, amongst

others (India, Japan). The focus of this study is on GPS, but the conclusions and

methodology could be applied to any of these systems with some modification.

2.2 Integrity of GNSS

Threats to the integrity and functionality of these systems can be classified

into the broad categories of jamming and spoofing. Jamming is essentially the

overpowering of the authentic signal with noise or clutter to prevent the receiver

from obtaining a correct navigation decision. These attacks are well researched

and understood with plentiful counter-measures available. The threat area of

growing interest is spoofing, which effectively amounts to providing receivers

with counterfeit GNSS data to confuse, disrupt, and/or mislead the receiver’s

position or timing solution. Some potential spoofing methods are described in

detail in References [8] and [9]. Current research and literature have presented

many methods of detection and, potentially, defense against a remote GPS

spoofing attack. These methods consist of various carrier to noise ratio (C/No)

detectors in the acquisition plane, [4],[5], spatial energy detection at the input

[10], post-position solution detection[6], [7], and integrated inertial measurement

unit data / GPS receiver systems [7] amongst others [11], [12]. Some methods
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use single antennas, others multiple antennas contained in both single platforms

and platform networks [13]. These methods provide many promising detection

techniques and attack the detection problem at almost all phases of the receiver

data flow.

Much literature is available on the general theory and background behind GNSS

and GPS in particular, as well as the tools required to analyze and evaluate the

experimental data. For example, [1] and [14] provide in depth discussions on the

topic, from the construction of the receiver components to the decision algorithms

and code generation. We will commence on a brief discussion of GPS in the

following paragraphs.

2.3 Global Positioning System

GPS navigation is a time of arrival (TOA) navigation system fundamentally based

on the simple relationship

distance = rate · ∆time

A signal is broadcast from a satellite at time t. A receiver observes the signal

at time t + ∆t. Using the speed of light as the propagation rate, a distance

is calculated. With distance measurements from four satellites, assuming the

satellite positions are known, a receiver is able to calculate its position in space

and an accurate estimate of time. Of course this is an ultra simplification; the

many sources of error and dilutions of accuracy in the navigation solution are

beyond the scope of this introduction. The aim is to give enough of background

that an unfamiliar reader can appreciate the content of this study.
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GPS consists of three segments: Space Segment, Control Segment, and User

Segment. Space Segment consists of a constellation of satellites, or space vehicles,

that transmit one-way signals providing satellite position and timing information.

Control Segment consists of a series of terrestrial monitoring and control stations

that maintain the health of the system. User Segment consists of GPS receiver

equipment which receives, processes, and analyzes the data received from the

Space Segment to provide position, navigation and timing (PNT) information to

the user[15].

Figure 3: GPS Constellation

The GPS constellation consists of 32 active satellites (as of the drafting of this

thesis)[16] in six equally spaced orbital planes. Figure 3 is a depiction of the

satellites in the orbital planes [17]. These satellites broadcasts two primary

signals, the legacy civil signal, L1 C/A (Coarse Acquisition) code and the military

signal, P(Y) or Precise code. The L1 signal is broadcast at 1575 MHz. There are

also new signals: L2 at 1227 MHz, and L5 at 1176 Mhz. These are the carrier

frequencies, where the navigation data is embedded. The P(Y) code is broadcast

on both L1 and L2 frequencies for military users [15]. An example of the spectrum

of GPS broadcast codes is shown in Figure 4 [18].

7



Figure 4: GPS L1 code broadcast spectrum

When the signals are received at the GPS receiver (User Segment) the receiver

conducts satellite acquisition. This process uses matched filters to correlate known

PRN (Pseudo-Random-Noise) codes that correspond to individual satellites to

the received signal to lock on and track a specific satellite’s signal. These PRN

codes are 1023 bit deterministic sequences (on the L1 frequency) unique to each

satellite in the constellation. The phase of the received PRN code doesn’t align

perfectly with the replicated PRN code. Figure 5 shows an example of code-delay

correlation (this figure is reproduced from [1]). The delay between the peak in the

correlation function and the receiver’s clock is the code delay; this measurement

(in units of meters) is the pseudorange.
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Figure 5: One-dimensional signal correlation in code phase

The frequency of the received signal is shifted from the designed carrier frequency;

this error from the designed carrier frequency is Doppler frequency shift. A search

is conducted over frequencies around the designed frequency until a maximum

correlation is found. Figure 6 graphically shows this 2-D grid search across

code-delay and frequency (this figure is reproduced from [1]). This search is

conducted as described in detail in Chapter 7.7 of [19]; the smaller the ”frequency

bin” the more precise the correlation and better signal detection, but longer

processing time is required.
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Figure 6: Two-dimensional signal correlation

The correlation peaks are found in the Doppler frequency vs. code delay plane

and are exemplified by Figure 7. It is in this realm that a spoofer could create a

falsified correlation peak and take a receiver hostage [8]. We discuss this point in

further detail in the next section.
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Figure 7: GPS correlation peak with two PRN’s present

Once a signal is identified as matching a known GPS satellite, the receiver

compares its internal clock to the noted time of transmission, and this ∆t is

used to calculate a range. Due to the many errors involved in this solution, (see

Figure 8) this measurement is an estimate, or approximated range; these are our

pseudoranges.
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Figure 8: Typical GPS solution error budget [1]

Once four pseudoranges have been measured by the receiver, a position solution is

calculated based on the relationship

∆x = H−1∆ρ

where ∆x is the displacement from an previously calculated approximate position,

H is a matrix of direction cosines pointing from approximated position to naviga-

tion satellites, and ∆ρ is the difference between pre-approximated pseudoranges

and measured pseudoranges.

The next chapter picks up with a more in depth look at the pseudoranges and

lays the groundwork for our test.
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2.4 Spoofing

As mentioned in the previous section the commonly accepted method of spoofing

begins with an attacker providing a counterfeit signal that matches the authentic

one in time and frequency. This signal shall match the composition of the authentic

signal in every aspect (with authentic information) so that one could not distin-

guish between the two in any manner. As shown in Figure 9 the attacker would

then increase the power of his signal and slowly move the delay of his counterfeit

signal away from the authentic one. Because the power of the spoofed signal will

surpass that of the authentic one, the receiver’s tracking mechanism would follow

the new signal. The spoofer would have successfully hijacked the receiver at this

point. This process is described in further detail in references [8] and [20].

Figure 9: Spoofing theory in C/A code correlation domain (spoofed signal dashed)

2.5 Additional Theory

The tools used to conduct the analysis were coded throughout the length of this

study, and use skeletons of functions provided in the GPS MATLAB toolbox from

L3 Communications. Many of the rudimentary GPS calculations were completed

using these functions [21]. Tactics for statistically evaluating the behavior of

spoofed signals and the detector were drawn from reference texts [19], [22], [23],

[24], [25] and [26].
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CHAPTER 3

Notation and Concept Development

3.1 Notation

We begin by imagining an array of m antennas spaced around a circular horizontal

platform of radius r. In local east-north-up (ENU) coordinate frame (discussed in

detail in Appendix [C], the position of an antenna k is
ek

nk

uk

 =


r sin θk

r cos θk

0

 (3.1.1)

We assume equal angular spacing let θ represent the geographic orientation of the

platform giving the angular position of the antennas, θk, as:

θk =
2π (k − 1)

m
+ θ (3.1.2)

This horizontal array is implemented in the configuration example of Figure 10.

Figure 10: Sample antenna configuration for m=3 antennas

The sky-view of GPS satellites will consist of N visible space vehicles (SVs) notated

by SV1, SV2...SVN . For this study, we assume a 5◦ elevation mask angle for receiver

14



Figure 11: Orientation axis[2]

antennas, rendering any SVs with elevation under 5◦ inapplicable. The position of

each SV relative to the center of our array is defined by range (d0,n), elevation (ψn),

and azimuth (φn). The range (d0,n) carries the 0 subscript designation because the

range to each antenna varies based on the orientation of the array and the SV’s

azimuth and elevation. Azimuth and elevation are assumed constant across all

antennas as dn >> r; the difference is negligible.

It is important to note here that elevation is a relative term while azimuth is

measured in degrees True (000◦T points towards geographic North). This is an

important distinction because this is the way the Novatel GPS receiver we use in

simulation reports its data and it allows for an orientation independent statistic

to be developed. The Spirent GSS8000 simulator used for testing uses an axis as

defined in Figure 11. In the local ENU format the position coordinates of each SV

are: 
en

nn

un

 =


d0,n cosψn sinφn

d0,n cosψn cosφn

d0,n sinψn


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The range from SVn to the nth antenna is:

dk,n =

√
(d0,n cosψn sinφn − ek)2 + (d0,n cosψn cosφn − nk)2 + (d0,n sinψn − uk)2

This equation is simplified to: (please see Section A.1 for full derivation)

dk,n ≈ d0,n − δk,n (3.1.3)

in which δk,n is

δk,n = r cosψn [sinφn sin θk + cosφn cos θk] (3.1.4)

This relationship is shown in Figure 12 for k=1.

Figure 12: Relationship between δk,n, d0,n, and dk,n

The distance from any specific satellite to any antenna relative to its distance

to the center of the array is approximately equal to −δk,n. This starts to form

the basis for our test. Figure 13 provides a graphical representation of these

measurements. In this graphical example, the δ1,n term is positive; if we had

instead used Antenna 2, we would have seen δ2,n appear longer than d0,n and
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the resulting δ2,n would have been negative. This alignment provides the spatial

correlating effect of our test, as shown later, and plays a large part in our analysis.

This is also the fundamental basis behind Equation 3.1.5.

Note: the following analysis depends on two summations of the δk,n terms. These

summations are valid for m ≥ 3. Section 3.3 explores these summations for m = 2.

m∑
k=1

δk,n = 0 (3.1.5)

and
m∑
k=1

N∑
n=1

δ2k,n =
mr2

2

N∑
n=1

cos2 ψn (3.1.6)

Figure 13: Satellite Distance Measurements

GPS receivers measure pseudoranges, not actual ranges. Thus, to connect the

observations of the receivers to our model we use the following relationship:

dk,n = ρk,n + bk + wk,n,
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where ρk,n is the observed receiver pseudorange, bk is receiver clock bias, and wk,n

is white Gaussian noise. As part of its solution method a receiver estimates bk,

hence the receiver is estimating the actual range. We use the term d̂k,n to refer to

the receiver’s measured distance between an antenna k and a SV n. Assuming a

perfect estimate of bk, this is

d̂k,n = ρk,n − bk = dk,n + wk,n (3.1.7)

We return to inaccurate estimates of bk later. Note: The COTS GPS receiver used

in this study executes the ρk,n − bk calculation before reporting the pseudorange

[27]. Hereafter, d̂k,n will be synonymous with receiver observed pseudoranges.

3.2 Assumptions

Satellite range is much larger than the spacing of antennas in array

(d0,n � r) The GPS constellation orbits Earth at a range of approximately

20000km above the Earth’s surface. Our test is being developed for antenna

arrays less than 20m in diameter. Thus, with 6 orders of magnitude differ-

ence, we ignore the contribution of the antenna spacing in this calculation.

Clock bias is estimated perfectly b̂k = bk

Until discussed in Section 4.4, we will assume the receiver clock bias is per-

fectly estimated. This estimation process is discussed in detail in Refer-

ence [1] and is typically accurate to 10−9 seconds. Removing the clock bias

estimation simplifies the primary analysis and allows for a more concise for-

mulation. The effect of the assumption is discussed in detail in Section 4.4.

Spoofing attacker is using a single transmitting source This assumption

is accurate exempting only the most complex of spoofing attacks [8]. A

multi-point transmitter broadcasting independent and unique satellite RF

signals creates a very challenging detection environment and is beyond the
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scope of this research. What this assumption allows us to do is to declare that

under spoofing every antenna in our array measures identical pseudoranges.

This point is discussed further in Section 4.1.

3.3 Special Case: Two-Antenna Test

The primary focus of this study is on antenna arrays of greater than two antennas,

but there is also use in developing the theory for a 2-antenna array, for example,

we could imagine an array consisting of an antenna on the front and rear of a

shipping container, truck, or ship. This example lends itself to a two-antennae

array more-so than a multi-antennae circular array.

The derivation of this special case is the equivalent to the multi-antenna case until

we derive the distribution of the Test Statistic in Section 4.3.
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CHAPTER 4

Development of Hypothesis Test

4.1 The Hypotheses

Our hypothesis test has two scenarios: the null hypothesis, H0, where no spoofing

is present and the alternate hypothesis, H1, where spoofing is present.

H0: With no spoofer present each individual range measurement is an accurate

estimate of the actual range for that antenna and satellite pair.

d̂k,n = dk,n + wk,n = d0,n − δk,n + wk,n

for k = 1, 2, ...m and n = 1, 2, ...N .

H1: With the spoofer present scenario, we assume the spoofer uses a simple one-

radiator spoofing environment, and thus we assume that each individual

antenna will receive the same identical RF GPS signals [8] and independent

noise. A more complicated multi-radiator spoofer would be more unpre-

dictable and this case is not addressed in this paper. The model of the

receiver pseudorange is

d̂k,n = d(s)n + wk,n

for k = 1, 2, ...m and n = 1, 2, ...N , where d
(s)
n is the spoofer’s generated

pseudorange to the nth satellite. All antennas will receive these identical

signals at different times due to propagation range, but this difference will

be estimated out through the receiver clock bias (effects of receiver clock bias

are presented later in Section 4.4).

We model each noise term, wk,n, as independent Gaussian statistics with zero

means and equivalent variances σ2 under both hypotheses. We can thus model
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our psuedorange distributions for H0 and H1 in the standard Gaussian shorthand

distribution format (x ∼ N (µ, σ2), where µ is the mean and σ2 is the variance)

as:

H0 : d̂k,n ∼ N
(
d0,n − δk,n , σ2

)
and H1 : d̂k,n ∼ N

(
d(s)n , σ2

)
(4.1.1)

respectively.

4.2 The Hypothesis Test

We construct our test viewing the null hypothesis, H0, as a simple hypothesis

of Neyman-Pearson formulation [25]. Using this method we will derive a test

statistic as a function of the psuedorange data T
(
d̂1,1, ..., d̂m,N

)
and compare this

statistic to a threshold value, λ, to declare spoofing or no spoofing.

With this method of testing we have two fundamental metrics for our test: Prob-

ability of False Alarm (PFA), and Probability of Detection (PD).

PFA A False Alarm is a type 1 error in statistical hypothesis testing and occurs

when the H0 hypothesis is rejected when H0 is in fact true. The Probability

of False Alarm is known as the size of the test or level of significance (α).

This level of significance is the amount of risk of erroneous detection built

into the test [24]. If this level is exceeded, then an event of significance has

occurred and it can be concluded that the outcome was not the result of

sampling error. Mathematically PFA is defined as

PFA =

∫
R1

p (x; H0) dx = α

where R1 is the critical region, or set of values where H1 is decided (H0

rejected) [26].
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PD A Detection is a successful rejecting of the H0 hypothesis when H1 is true, in

other words, deciding H1 when H1 is correct. The Probability of Detection

is known as the power of the test [26] and is defined as

PD =

∫
R1

p (x; H1) dx

where R1 is the region of possible values where H1 is declared.

When using a Neyman-Pearson criterion, the optimum test is a likelihood ratio

test (LRT) [23] which takes the form:

T (x) =
p (x; H1)

p (x; H0)
> γ

or in our case

T
({
d̂k,n

})
=
f
({
d̂k,n

}
|H1

)
f
({
d̂k,n

}
|H0

) > λ

where the notation
{
d̂k,n

}
signifies the set of all m ·N range measurements.

The LRT is a ratio of the conditional probability density functions (PDFs) of the

measurements under the two hypotheses. In Equation 4.1.1 we characterized both

hypotheses as Gaussian Normal Distributions and so we use the Gaussian PDF

format

(
f (x, µ, σ) = 1

σ
√
2π
e−

(x−µ)2

2σ2

)
to express our LRT as:

T
({
d̂k,n

})
=

m∏
k=1

N∏
n=1

1
σ
√
2π
e−

(d̂k,n−d(s)n )
2

2σ2

1
σ
√
2π
e−

(d̂k,n−d0,n+δk,n)
2

2σ2

(4.2.1)

This function simplifies (see Section A.3) to

T
({
d̂k,n

})
=

m∑
k=1

N∑
n=1

d̂k,n
(
d(s)n + δk,n − d0,n

)
(4.2.2)

Figure 14 graphically shows the null and alternate hypotheses distributions with

the threshold plotted against it. As the threshold moves left and right along the

axis, the Probabilities of Detection and False Alarm are modified accordingly.
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Figure 14: Hypotheses testing distributions

4.2.1 Estimation of Unknowns

Equation 4.2.2 depends on a measured value, d̂k,n, a calculated value, δk,n, the

unknown pseudoranges, and d0,n. In order to calculate a test statistic we must

estimate these two values.We now offer a modified form of the LRT which utilizes

the estimated parameters called the generalized likelihood ratio test (GLRT).

The GLRT takes the form [26]:

LG(x) =
p
(
x; θ̂1,H1

)
p
(
x; θ̂0,H0

)
where θ̂i is the maximum likelihood estimator (MLE) of θi.

In Section A.4 we show how the MLE of the unknowns is derived and discover that

the best estimation of d
(s)
n and d0,n are identical. Substituting these expressions

into Equation (4.2.2) reduces the final resulting test statistic to:

T
({
d̂k,n

})
=

m∑
k=1

N∑
n=1

d̂k,nδk,n (4.2.3)
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4.3 Performance of Hypothesis Test
Multi-Antenna Arrays

Because the test statistic Equation (4.2.3) is a linear combination of Gaussian

variables, the test statistic itself is also Gaussian distributed.

Under hypotheses H0 and H1 the distributions are:

T ∼ N
(
µ0, σ

2
T

)
and T ∼ N

(
0, σ2

T

)
respectively, with

µ0 = − mr2

2

N∑
n=1

cos2 ψn (4.3.1)

and

σ2
T =

mr2σ2

2

N∑
n=1

cos2 ψn (4.3.2)

Details of the distribution derivations are included in Section A.5.

A test with Gaussian statistics has a false alarm probability (size of test) in the

form [24]

PFA = P (T > λ|H0) = Q

(
λ− µ0

σT

)
(4.3.3)

Here we reference the Gaussian right tail probability Q function which is de-

fined as Q(x) = 1−Φ(x), Φ being the cumulative distribution function (CDF) [22]

The power of the test, or probability of detection (PD) takes the form:

PD = P (T > λ|H1) = Q

(
λ− µ1

σT

)
Neyman-Pearson hypothesis testing typically fixes PFAand allows us to solve for

the desired threshold:

λ = σTQ
−1 (PFA) + µ0 (4.3.4)
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Plugging in expressions (4.3.4), (4.3.1), and square root of (4.3.2) into the PD equa-

tion yields a final performance expression:

PD = Q

(
Q−1 (PFA) +

µ0 − µ1

σT

)
(4.3.5)

PD = Q

Q−1 (PFA) +

√√√√mr2

2σ2

N−1∑
n=0

cos2 ψn

 (4.3.6)

The terms present in the performance equation highlight a few key characteristics

for us. Namely the performance of the detector increases as the radius of the

array, r, is enlarged or the number of antennas in the array, m is increased. The

performance likewise decreases as the user estimated range error (UERE), σ, or

signal to noise ratio (SNR) is increased. These are obvious and expected.

One term remains in this equation that will be explored in more detail in the next

section, and this is the satellite constellation/ satellite elevation dependent term,∑N
n=1 cos2 ψn.

4.3.1 Sky Term

Let’s define the Sky Term as:

Sky Term =
N∑
n=1

cos2 ψn (4.3.7)

This expression is a function of the number of satellites in view, N , and their

individual elevations,ψn. Since 0◦ ≤ ψn ≤ 90◦, cos2(ψn) ranges from 0 to 1 and

|cos2(ψn)| is inversely related to the elevation of the satellite. Furthermore, we can

state that
N∑
n=1

cos2 ψn ≤ N

through the simple example that if all satellites were at 0◦ elevation (which they

never are) we would have
∑N

n=1(1) = N .
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So how does this help us? The Sky Term is a scalar multiplier in the detection

equation. Therefore, this term is a figure of merit for predicting performance.

It is a satellite-dependent predictor; we can look at the relevant GPS Almanacs

and predict how well the test will perform. Figure 15 demonstrates the temporal

variation in this detector, which nearly repeats every 24 hours. In this example

plot we see a maximum Sky Term of just over 10 around hour 17, and a minimum

Sky Term just under 4 around hour 6. The average Sky Term throughout the day

is near 6; we see this result replicated in Figure 16. Performance spoiler alert: we

use this average value of 6 to build Table 1 which is a quick, easy reference for

what radius the antennas should be placed at to achieve desired performance with

a guess-timated UERE and α set for .001.

Time (hours)
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Figure 15: Sky Term plotted over the course of 24 hours at a fixed location

Using almanac data, Figure 16 shows the average Sky Term over the course of a

day (August 20, 2014) in North America. This highlights the spatial variation in

our test. Less obvious here is the implications on temporal variation; the GPS

constellation has a period of 11 hours and 58 minutes thus shifting the bands of
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PD↓ r (PD, σ)

σ → 2 3 4 5 6

0.01 0.51 0.76 1.02 1.27 1.53
0.09 1.17 1.75 2.33 2.92 3.50
0.19 1.47 2.21 2.95 3.69 4.42
0.29 1.69 2.54 3.38 4.23 5.07
0.39 1.87 2.81 3.75 4.68 5.62
0.49 2.04 3.07 4.09 5.11 6.13
0.59 2.21 3.32 4.42 5.53 6.64
0.69 2.39 3.59 4.78 5.98 7.17
0.79 2.60 3.90 5.20 6.49 7.79
0.89 2.88 4.32 5.76 7.19 8.63
0.99 3.61 5.42 7.22 9.03 10.83

Table 1: Radius in meters required to achieve desired performance with given
UERE (σ) (α = .001)

relatively high/low performance around the earth at a steady clip.

Figure 16: Average of daily Sky Terms across North America

4.3.2 Two-Antenna Arrays

Similar to the multi-antenna case, the two-antenna test statistic will be Gaussian

distributed.
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Under hypotheses H0 and H1 the distributions are:

T2ant ∼ N
(
µ0,2ant, σ

2
T,2ant

)
and T2ant ∼ N

(
0, σ2

T,2ant

)
where

µ0,2ant = r2
N∑
n=1

cos2 ψn
[
1 +

(
1− 2 sin2 φn

)
cos(2θ) + 2 sinφn cosφn sin(2θ)

]
(4.3.8)

and

σ2
T,2ant = σ2r2

N∑
n=1

cos2 ψn
[
1 +

(
1− 2 sin2 φn

)
cos(2θ) + 2 sinφn cosφn sin(2θ)

]
(4.3.9)

These distributions are derived in Section A.5. Clearly the two-antenna case is

more complicated than the multi-antenna case. The performance now depends

on the orientation, θ, and the azimuths of visible satellites, instead of simply the

elevations. This makes intuitive sense, for if a satellite was broadside to the two

antenna array, there would be less discernible difference in range than if the satellite

was in line with the array. The effect of orientation on performance is shown later

in Chapter 5 in Figure 25.

4.4 Clock Bias Effects

Let’s re-state the range measurement equation, Equation 3.1.7, here:

d̂k,n = ρk,n − bk = dk,n + wk,n

Up until this point, we assumed that the clock bias, bk, estimate was perfect, i.e.

b̂k = bk. If we remove that assumption and include this estimate, b̂k in the equation,

we can analyze the effect of this imperfect estimation in the test. Restating the

definition of the range measurement:

d̂k,n = ρk,n + bk − b̂k = dk,n + wk,n (4.4.1)
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The full analysis of this subject is presented in [28]; we will present the conclusions

here:

The mean under the imperfect clock bias estimation remains the same at µ0, but

the variance is modified to:

σ2
T ′ = σ2hTh

m∑
k=1

(
N∑
n=1

δk,n

)2

+ σ2

m∑
k=1

N∑
n=1

δ2k,n (4.4.2)

where hT is a component of the matrix
(
HTH

)−1
HT , where H is a ”geometry”

matrix generated by relevant satellites’ azimuths and elevations.

The result is that the detector performance is reduced by a small amount (not

particularly significant), independent of the actual clock bias.
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CHAPTER 5

Methodology of Performance Testing

In order to effectively present and substantiate the performance of the detection

method, testing was completed in three phases of increasing complexity.

Theoretical The theoretical performance metrics (PFAand PD) are used to

generate expected performance curves.

Simulation Using a Spirent GSS 8000 GNSS simulator, simulated constellation

RF was created and fed into a NovAtel receiver for processing. Extracted

pseudoranges were fed into the testing algorithm, and a realized performance

curve was generated.

Experimentation An array of three antenna-receiver combinations were de-

ployed to measure real-time GPS signals. Extracted pseudoranges were fed into

the testing algorithm for a spoof/no-spoof declaration.

A more in-depth discussion of methodology is undertaken in the following sections.

All data processing and function calls are completed in MATLAB®.

5.1 Almanac-based Simulations

The first level of testing uses GPS Almanac data provided by the United States

Coast Guard Navigation Center [16] to determine visible SV position information

for a fixed reference location and then calculate ranges to the array center and

offset antennas. These range calculations are combined with some additive white

Gaussian noise (AWGN) to produce pseudoranges. These pseudoranges combined

with SV position information provide the inputs to the hypothesis test and a

performance curve is generated.
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A discussion of the coordinate transformations used in this section is available in

Appendix A.

Given Inputs Fixed reference position: (Lat,Long); GPS time of week (TOW);

UERE; number of antennas m; radius of antenna array r

Procedure 1. The reference location is converted from geodetic coordinates to

ECEF coordinates, and finally used as the origin in local ENU coordi-

nates. For the no-spoofing scenario an antenna array with the correct

spacing and number of antennas is generated in the ENU coordinate sys-

tem and converted to ECEF coordinates for interaction with the space

vehicles. For the spoofing scenario, the array consists of three antenna

positions at the center of the array. Figure 17 shows these positions.

2. Using the initial position’s ECEF coordinates, the almanac data can be

used to determine which space vehicles are visible above the 5◦ mask

angle and their ECEF coordinates, relative elevations, and relative az-

imuths. Functions from [21] are used for this step.

3. Using the equations given in Chapter 4 the δn,k’s are calculated.

4. In a ten-thousand cycle loop, the UERE is simulated by adding Gaus-

sian random noise numbers to the range values and the hypothesis test

statistics are calculated by Equation 4.2.3 for each cycle under both

hypothesis scenarios. We use T0 to represent the no-spoof scenario and

T1 to represent the spoofing scenario test statistics.

5. A set of linearly spaced thresholds (λ’s) are generated using the lesser

of the minimum T1 and T0 and the greater of the maximum T1 and

T0. The sets of T0 and T1 are compared to the thresholds to generate
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PFA and PD using the relationships

PFA,j =

∑10000
i=1 (T0i > λj)

10000

PD,j =

∑10000
i=1 (T1i > λj)

10000

(5.1.1)

Figure 18 shows an example of various thresholds plotted against some

T0 and T1 data. It is easy to visualize the above relationships on this

graphic for each threshold.

6. Finally, the ROC curve is generated by plotting PDvs. PFA. This is the

standard procedure for generating performance curves.

Results Shown in Chapter 6

Figure 17: Antenna array configurations for theoretical and simulated performance
testing
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Figure 18: Example thresholds plotted against T0 and T1 data

5.2 Simulator Testing

The second level of testing feeds a simulated GPS constellation (for a fixed-

position) over time generated by a Spirent GSS8000 GNSS simulator into a

Novatel ProPak v3 GPS Receiver (hereafter known as ’the receiver’) which records

psuedorange and SV azimuth and elevation data. This data is post processed and

produces a performance curve.

The software and hardware configuration for both components are available in

Appendix B.

Given Inputs Fixed reference position: (Lat,Long); GPS time of week (TOW);

number of antennas m; radius of antenna array r

Procedure 1. The simulator is configured to provide real-time GPS constel-

lation data for a single position in space. To simulate the different

antennas in the array and the center point, the simulation is run multi-
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ple times, m times at the array center for the H1 scenario, and once at

each of m offset antenna locations.

2. The receiver saves observation data in ASCII strings every second which

is later read by a proprietary parsing function written for this test.

3. After the data is filtered to align time samples across antennas and

remove singular data points (see again Appendix B) pseudorange and

delta values are calculated using Equation 3.1.4.

4. An intermediate step at this point is to calculate the observed UERE

(user estimated receiver error). The receiver provides us with an addi-

tional ASCII code that provides a root mean square (RMS) value of the

standard deviation of range inputs to the navigation process [29]. We

subsequently find this is not an entirely accurate estimate of noise, and a

modification is made to scale this UERE as necessary. See Section 6.3.1

for further discussion.

5. The Sky Term is also calculated for later use in generating a unique

threshold for each test as presented in Equation 4.3.4.

6. These deltas, pseudoranges, and Sky Terms get further vetted to ensure

that Equation A.2.1 is satisfied. If not, then the time sample data set

is thrown out.

7. At this point, an individual threshold is calculated for each time sample

and each false alarm value in accordance with Equation 4.3.4. Each T0

and T1 test statistic are compared to their respective thresholds and

summed to measure the performance at each false alarm level.

Note this is a deviation from the previous theoretical test which

contributed AWGN to measurements from a constant sky view. We

34



were able to use a constant threshold for every test statistic. Our sky

view is changing constantly, thus it is critical that a new threshold is

calculated for each time sample as the threshold value is time dependent!

Results Results from this test are shown in Chapter 6.

5.3 Real-time Multi-Antenna Testing

The final experiment involved three Novatel ProPak v3 GPS receivers connected

to three Furuno GPA-019 omnidirectional GPS antennas. These antennas were

placed in an equilateral formation as used in all previous simulations for unspoofed

portions and all together in a tight cluster for spoofed scenarios. These set-ups

are depicted in Figures 19, 20, and 21. The obstruction shown in cases 1 and

2 is the wall of a three story high brick building (Figure B.5). These are the

obstructed-view cases and demonstrate the effect poor geometry has on the test.

Cases 3 and 4 have a clear, unobstructed view of the sky.
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Figure 19: Antenna configuration for experiment case 1

Figure 20: Antenna configuration for experiment case 2
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Figure 21: Antenna configuration for experiment cases 3 & 4

The hardware configuration for this test is described in Appendix B.

Given inputs Desired PFA; number of antennas m; radius of antenna array r;

Procedure 1. The receiver/antennas were all spaced according to their H0 ra-

dius, turned on at roughly the same time, and started collecting data

which was extracted in the same ASCII codes as the simulation test.

2. When ”spoofing” occurred the antennas were moved into a cluster po-

sition as close as possible. Figure 22 shows the transition graphically.

3. The same data grooming techniques for the simulation test were used

for this test with one addition. The transition time where the antennas

were physically being moved was removed from the data sample.

4. Instead of calculating a performance curve this test aimed to present the

performance of the test in a binary spoof or no-spoof manner. Thus,

an individual threshold was calculated for each timestep, compared to
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it’s test-statistic, and the result was delivered as a 1 or 0.

Results The results of this test are plotted in Chapter 6.

Figure 22: Experimental antenna configuration under spoofing and no-spoofing
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CHAPTER 6

Results and Performance

6.1 Almanac-based Simulations

Figure 23 is a simple ROC curve using three antennas, a Sky Term of 5, and

radius/sigma (we define this as the γ ratio) ratio of 1. Performance is quite good

- the gamma ratio was selected to improve visibility of the performance curve.
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Figure 23: Example performance curve

The second performance graphic, Figure 24 plots a performance curve ever 4-hour

interval for 24 hours at a fixed location showing the temporal variation in the test

due to changing Sky Terms.
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Figure 24: Performance of test utilizing various Sky-terms

Next, we present the performance of the two-antenna test. In Figure 25 ROC

curves were generated for a two-antenna system at various θ orientations and

compared to a three-antenna system. These performance curves are generated

using a single snapshot of SVs. The constellation is shown in Figure 26. As

expected, no orientation of a two-antenna array can compare to a three-antenna

array, but performance is affected and reduced for poor geometric alignment. The

more broadside the SVs are to the array orientation, the lower the performance.

40



Figure 25: Performance of Two-Antenna Array
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Figure 26: Visible constellation of SVs for two-antenna test

Using the Sky Term as a figure of merit for performance, Figure 27 shows explicitly

how performance changes with array rotation.
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Figure 27: Sky Term as a function of orientation (θ) for two-antenna test

6.2 Simulator Testing

The GSS8000 Simulator tests provided excellent results as expected. Shown below

are the performance plots generated using 24 hours of data from the simulator.

Figure 28 shows the observed simulation performance plotted against theoretical

performance curves generated using maximum and minimum observed Sky Term

bounds. For these tests, the parameters , σ = .1269 and r = .10m. were used.
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Figure 28: Simulated constellation performance curve with maximum and mini-
mum Sky Term bounds

The performance in the plot is not all that impressive - this is due to the incredibly

small radius (.1m) used to generate the data. A radius this small was required

because the only noise experienced in this exercise was receiver noise at less than

a tenth of what atmospheric noise would normally provide [1]. Any increased

radius results in unity performance, which is awesome, but does not present well

graphically. The curve is also a little jagged, and that is due to the snapshot

method of performance detected described in the last chapter.

It is interesting to see how the observed curve fits cleanly between the maximum

and minimum theoretical curves - and this makes sense. Because the test is time

variant the performance curves are also time variant; if a ROC curve was drawn

at each snapshot, we would see the curves fill the space between these bounds

perfectly. As such, the observed simulation curve is in effect an average of all

potential curves.

43



In Figure 29 we see how well the estimated PFA matches the desired exact PFA.

Ideally, this would be a straight line. The curvatures (errors) are due to an

imprecise estimate of observed σ. This is a graphical realization of the noise

estimation problem discussed in Section 6.3.1.

As the estimation of noise improves, the performance of the test improves. This

dilemma manifests itself again in the next test. For this test, the following param-

eters were used: σ = 2.61, r = 3.307, andm = 3.
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Figure 29: Simulated Constellation Test

6.3 Real-Time Multi-Antenna Testing

The results of this experiment match predictions and demonstrate some key points

of the test. Performance was set for 1% false alarm rate for all experiments. The

Sky View for each test is shown in Figure 30 and theoretical performance curves

(using the sample mean Sky Terms) for each case are compared in 31.
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Figure 30: Sky Terms for all experiments
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Figure 31: Theoretical performance curves for experimental cases using sample
mean Sky Terms.

Case 1: Obstructed View Experiment 1

In Case #1 the antennas were exposed to an obstructed western sky-view that

blocked all SV’s to the West. This greatly reduced the average Sky Term to

a quite minimal 2.805. This is far below the average predicated Sky Term of
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that position (given an assumed unobstructed sky-view) of 6.0898 as shown in

Figure 32. The performance is obviously very poor. Figure 33 shows a large

amounts of undetected spoofing time, which is expected based on the theoretical

performance curve shown in 31. Simultaneously, there are also a large amount of

false alarms during the unspoofed period. This can be explained by the poor Sky

Term which is roughly half of the predicted value.

This test was conducted at an antenna array radius of 3.307 meters and used the

σUERE value of 2.651 (calculated as discussed in Case 4).
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Figure 32: Predicted Sky Terms at location of experiment
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Figure 33: Spoof or No-Spoof test case 1

Case 2: Obstructed View Experiment 2

Case 2 conducted the same test as Case 1, except the antenna array was offset

from the obstruction by an additional 5m. This small shift opened more sky to the

array which improved the Sky Term by a significant 39% to ≈3.9. Performance

increased proportionally as well.
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Figure 34: Spoof or No-Spoof test case 2

Case 3: Rooftop Experiment 1

Now we get to the unobstructed view tests. These were conducted on the roof

of McAllister Hall (the engineering building) at the U.S. Coast Guard Academy.

The sky view was unobstructed (the few nearby buildings didn’t rise above the 5◦
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mask angle.) and so our experienced SkyTerm was much improved. Performance

was also much improved, as you can see in Figure 35. This is expected.
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Figure 35: Spoof or No-Spoof test case 3

Case 4: Rooftop Experiment 2: Measured Noise

The final case was another rooftop unobstructed view experiment. The difference

in this experiment was the added pseudorange noise measurement code described

in the next section. Performance was outstanding as can be seen in the figures

below.

And finally, the results of the unobstructed sky view test are as follows:
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Figure 36: Spoof or No-Spoof test case 4

6.3.1 Noise Measurement

As discussed in Section 4.3, the threshold is a function of the UERE. The UERE

is difficult to measure directly, and must be estimated in some manner. The

NovAtel receiver provides us with a root-mean squared (RMS) average of the

standard deviation (1σ) of range measurement errors.[29] This value is provided

in field three of the GPGST ASCII string referenced in Section B.3.

Since our test is inherently weighted towards lower-elevation satellites, we want to

weight our noise estimate equivalently. A mini-experiment to determine this scale

factor was conducted by taking a four hour time sample and looking at the range

residuals as a function of the elevation of the satellite. The resultant residuals

grouped by low-elevation satellites (< 45◦) and high-elevation satellites (> 45◦) is

shown in Figure 37.
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Figure 37: Range residuals sorted by high and low-elevation satellites

The experiment showed that the low altitude satellites indeed induce higher than

normal variance (1.6x that of the high-altitude satellites). This motivates the need

for a scale factor. Thus, we use the RMS value and multiply by a scale factor of 1.1

. This factor was further determined to be appropriate by declaring a probability

of false alarm, and modifying the scale factor until it was appropriately realized.

This is just a calibration of the test. To demonstrate the importance of the correct

estimation of UERE here (Figure 38) are two plots of Case 4 hypothesis tests using

the original UERE and the modified UERE:
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Figure 38: Case 4 detection using original and scaled UEREs (σ)

The false alarm rate increased to 2.16% (not shown in plot) by using the unscaled

UERE, a pretty significant increase of false alarms! If the UERE was accurately

measured and scaled in the previous three cases, perhaps performance would have

been more promising!

Experimental Disclaimers

Please see Section B.2 in Appendix B for a discussion on the implementation of this

experiment. Some assumptions of this study were relaxed in the implementation.
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CHAPTER 7

Conclusions and Discussion

7.1 Discussion

In conclusion, this thesis has demonstrated a new approach for detecting GPS

spoofing attacks leveraging pseudorange measurements from an array of receivers.

The performance of this method was shown to depend on the number of antennas

and the distance they are spaced within the multi-antennae array as well as the

geometry of the visible GPS satellite constellation. Simulations and experiments

validate the quantitative theoretical claims made about performance.

As for qualitative performance, this thesis has demonstrated that using pseu-

doranges is a feasible and successful detection method. In the introduction we

talked about the goal to develop a cheap, deployable, and interoperable detection

method. The simulations conducted here were all done in post-processing with

MATLAB functions; the extension to a real-time test with a user interface

would take a development team a minimal amount of time to development.

The equipment used were off-the-shelf pieces found in an undergraduate EE

communications laboratory; these were not expensive and custom items. Fur-

thermore, they were units the U.S. Coast Guard actually has installed on

various assets: we know the test works with this equipment! Given a wide-

enough array, this test would provide very dependable results at a fraction of

the cost of an integrated hardware system. We can thus declare the objectives met.
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7.2 Future Work

There is still work to be done on this detection method.

The analysis can (and should be) extended to include a 3-dimensional array.

If this test works for low-elevation satellites using a horizontal antenna plane,

then it should work for high-elevation satellites using a vertical antenna plane.

What is the optimal configuration under this scenario? Furthermore, a more

in-depth study of pseudorange noise estimation needs to be conducted to nail

down a procedure for procurring a real-time UERE value for detection calcula-

tions. The last step of analysis is an obvious one - how does this test function

with moving platforms? My suspicion is that it will take the form of the non-

coherent unknown orientation problem discussed in [28] and will experience a small

drop in performance (will likely exacerbate clock bias estimation performance loss).

Better testing methodologies can be employed to solidify performance promises;

we need to develop real-time testing software and experiment with it. An obvious

testing improvement would be to implement a broadcasting spoofer to test our

array with. When someone markets the iSpoof we can realize this goal. Next,

we need to test with a moving platform, and identify methods for precisely

monitoring spoof vs. no-spoof test conditions so delays in detection identification

can be measured.
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APPENDIX A

Detailed Derivations

A.1 Multi-Antenna Array
Distance

The range from SVn to Antk is:

dk,n =

√
(d0,n cosψn sinφn − ek)2 + (d0,n cosψn cosφn − nk)2 + (d0,n sinψn − uk)2

Expanded and simplified:

dk,n =
√
d20,n − 2rd0,n cosψn (cos θk cosφn + sin θk sinφn) + r2

With d20,n >> r2 we can neglect the r2 term .

dk,n ≈
√
d20,n − 2rd0,n cosψn (cos θk cosφn + sin θk sinφn)

Defining δ as:

δk,n = r cosψn (cos θk cosφn + sin θk sinφn)

Note: the maximum value of each δk,n is r.

The expression is further simplified to:

dk,n ≈
√
d20,n − 2d0,nδk,n

And finally simplified to:

dk,n ≈ d0,n

√
1− 2δk,n

d0,n

An approximation of this expression is conducted using Taylor’s Theorem [30]

letting x =
2δk,n
ρ0,n

* about x = 0:

d0,n
√

1− 2x = d0,n

∞∑
k=0

xk

k!

(
∂k

∂xk
√

1− 2x

)∣∣∣∣
x=0
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= d0,n

(
√

1− 2x
∣∣
x

= 0− x
1√

1− 2x

∣∣∣∣
x=0

− x2

2

1

(1− 2x)3/2

∣∣∣∣∣
x=0

+ ...

)

= d0,n

(
1− x− x2

2
+ ...

)
≈ d0,n (1− x)

* We can truncate this approximation after 2 terms because the size of x is quite

small relative to the range. max (δk,n) = r, r
d0,n
≈ 1

106

A.1.1 Multi-Antenna Array Facts

Mirroring [28], we develop some initial facts for simplifying the analysis:

Fact 1

For the antenna locations θk

Zc =
m∑
k=1

cos θk = 0 Zs =
m∑
k=1

sin θk = 0

Starting with
∑m

k=1 cos θk = 0, we expand the expression using Equation 3.1.2 to

get:
m∑
k=1

cos

(
2π (k − 1)

m
+ θ

)
Separate terms within the cosine

m∑
k=1

cos

(
2πk

m
−
(

2π

m
+ θ

))
Use the trigonometric identity cos(α + β) = cos(α) cos(β) − sin(α) sin(β) to

separate the cosine. This expression is then split into two summations:

m∑
k=1

(
cos

(
2πk

m

)
cos

(
2π

m
+ θ

)
− sin

(
2πk

m

)
sin

(
2π

m
+ θ

))
m∑
k=1

cos

(
2πk

m

)
cos

(
2π

m
+ θ

)
−

m∑
k=1

sin

(
2πk

m

)
sin

(
2π

m
+ θ

)
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By pulling the scalars out front, we isolate the contribution of θ and the summation

over k.

cos

(
2π

m
+ θ

) m∑
k=1

cos

(
2πk

m

)
− sin

(
2π

m
+ θ

) m∑
k=1

sin

(
2πk

m

)
We now call on Langrange’s trigonometric identities [30]:

N∑
n=1

sin (nθ) =
1

2
cot

(
θ

2

)
−

cos
((
N + 1

2

)
θ
)

2 sin 1
2
θ

and

N∑
n=1

cos (nθ) = − 1

2
+

sin
((
N + 1

2

)
θ
)

2 sin 1
2
θ

to expand our expressions.

cos

(
2π

m
+ θ

)(
−1

2
+

sin
((
m+ 1

2

) (
2π
m

))
2 sin 1

2
2π
m

)
− sin

(
2π

m
+ θ

)

·

(
1

2
cot

2π
m

2
−

cos
((
m+ 1

2

)
2π
m

)
2 sin 1

2
2π
m

)

This is ugly, so let’s divide and simplify, attacking the left half of the equation

first:

cos

(
2π

m
+ θ

)
·

(
−1

2
+

sin
((
m+ 1

2

) (
2π
m

))
2 sin 1

2
2π
m

)

cos

(
2π

m
+ θ

)
·

(
−1

2
+

sin
(
2π + π

m

)
2 sin π

m

)
We call upon the trigonometric identity sin(α+ β) = sin(α) cos(β) + cos(α) sin(β)

and expand:

cos

(
2π

m
+ θ

)
·

(
−1

2
+
���

��: 0
sin (2π) cos

(
π
m

)
+���

��: 1
cos (2π) sin

(
π
m

)
2 sin

(
π
m

) )

cos

(
2π

m
+ θ

)
·

−1

2
+

�
�
�
�
��>

1
2

sin
(
π
m

)
2 sin

(
π
m

)

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cos
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2π

m
+ θ

)
·
��

��
�
��*

0(
−1

2
+

1

2

)
= 0 X

And now for the right portion:

sin

(
2π

m
+ θ

)
·

(
1

2
cot

2π
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−

cos
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2

)
2π
m

)
2 sin 1
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·
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)
sin
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) )
Calling again on the cos(α+β) = cos(α) cos(β)− sin(α) sin(β) identity and some

further simplification:

sin

(
2π

m
+ θ

)
·
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cos
(
π
m

)
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cos (2π) cos

(
π
m

)
−����

�: 0
sin (2π) sin

(
π
m

)
2 sin

(
π
m

) )

sin

(
2π

m
+ θ

)
·

���������
�: 0

cos
(
π
m

)
− cos

(
π
m

)
2 sin

(
π
m

)
 = 0 X

Now let’s show the derivation for
∑m

k=1 sin θk = 0, starting with substituting

Equation 3.1.2 for θk:
m∑
k=1

sin

(
2π (k − 1)

m
+ θ

)
= 0

m∑
k=1

sin

(
2πk

m
−
(

2π

m
+ θ

))
Using the trigonometric identity for sin(α + β) from above:

m∑
k=1

(
sin

(
2πk

m

)
cos

(
2π

m
+ θ

)
+ cos

(
2πk

m

)
sin

(
2π

m
+ θ

))
m∑
k=1

sin

(
2πk

m

)
cos

(
2π

m
+ θ

)
−

m∑
k=1

cos

(
2πk

m

)
sin

(
2π

m
+ θ

)
Pulling out the scalars:

cos

(
2π

m
+ θ

)
��

�
��

�
��
�*0

m∑
k=1

sin

(
2πk

m

)
− sin

(
2π

m
+ θ

)
��

��
�
��

��*0
m∑
k=1

cos

(
2πk

m

)
It’s clear that this case now mirrors the Zc case derived in detail above.

And thus we conclude derivation of Fact 1.
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Fact 2

m∑
k=1

δk,n = 0

Substitute Equation 3.1.4 for δk,n:

m∑
k=1

r cosψn [sinφn sin θk + cosφn cos θk]

We expand the expression and pull out the constants:

r cosψn sinφn
�
�
�
�
��>

0
m∑
k=1

sin θk + r cosψn cosφn
�
�
�
�
��>

0
m∑
k=1

cos θk

We can see this has the components Zs and Zc from Fact 1. Applying these facts

show that this Fact is also 0.

Fact 3

Zss ≡
m∑
k=1

sin2 θk =
m

2
, Zcc ≡

m∑
k=1

cos2 θk =
m

2
, and Zsc ≡

m∑
k=1

sin θk cos θk = 0

Deriving Zss begins with the power reduction identity for sine, sin2 θk = 1−cos 2θk
2

.

m∑
k=1

sin2 θk =
m∑
k=1

1− cos 2θk
2

Substituting in Equation 3.1.2 for θk:

=
m∑
k=1

1− cos 2·2π(k−1)+θ
m

2

=
m∑
k=1

1− cos
(
4πk
m

+ θ−4π
m

)
2

=
m∑
k=1

1− cos
(
4πk
m

)
sin
(
θ−4π
m

)
+ sin

(
4πk
m

)
cos
(
θ−4π
m

)
2

=
m

2
−

m∑
k=1

cos

����7
2πk
m

4πk

m

 sin

(
θ − 4π

m

)
− sin

����7
2πk
m

4πk

m

 cos

(
θ − 4π

m

)
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It is clear to see that the 2πk
m

trig terms are equivalent to the analysis from Fact 1

and will simplify to zero. Thus, we can conclude at this point with our solution:

Zss =
m

2

Deriving Zcc begins with the power reduction identity for cosine, cos2 θk = 1+cos 2θk
2

.

m∑
k=1

cos2 θk =
m∑
k=1

1 + cos 2θk
2

Substituting in Equation 3.1.2 for θk:

=
m∑
k=1

1 + cos 2·2π(k−1)+θ
m

2

=
m∑
k=1

1 + cos
(
4πk
m

+ θ−4π
m

)
2

=
m∑
k=1

1 + cos
(
4πk
m

)
sin
(
θ−4π
m

)
+ sin

(
4πk
m

)
cos
(
θ−4π
m

)
2

=
m

2
+

m∑
k=1

cos

����7
2πk
m

4πk

m

 sin

(
θ − 4π

m

)
− sin

����7
2πk
m

4πk

m

 cos

(
θ − 4π

m

)

It is clear to see that the 2πk
m

trig terms are equivalent to the analysis from Fact 1

and will simplify to zero. Thus, we can conclude at this point with our solution:

Zcc =
m

2

Deriving Zsc begins with the product-to-sum identity for sin/cosine, sinα · cos β =

sin(α+β)+sin(α−β)
2

.

m∑
k=1

sin θk cos θk =
m∑
k=1

sin (θk + θk) + sin (θk − θk)
2

Removing the zero term and consolidating:

=
m∑
k=1

sin (2θk)

2
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With some foresight, we can convince ourselves that this derivation will follow the

same as the previous one. Thus we declare the conclusion:

Zsc = 0

Fact 4

m∑
k=1

N∑
n=1

δ2k,n =
mr2

2

N∑
n=1

cos2 ψn ≤
mr2N

2

We start by substituting in Equation 3.1.4 for δk,n:

N∑
n=1

m∑
k=1

δ2k,n =
N∑
n=1

m∑
k=1

(r · cosψn [sinφn sin θk + cosφn cos θk])
2

=
N∑
n=1

m∑
k=1

r2 cos2 ψn
(
sin2 φn sin2 θk + 2 sinφn sin θk cosφn cos θk

+ cos2 φn cos2 θk
)

= r2
N∑
n=1

cos2 ψn

(
sin2 φn

m∑
k=1

sin2 θk + 2 sinφn cosφn

m∑
k=1

sin θk cos θk

+ cos2 φn

m∑
k=1

cos2 θk

)

We see Zss, Zcc, and Zsc components readily in the above expression, and

so we apply the results from Fact 3

= r2
N∑
n=1

cos2 ψn

(m
2

sin2 φn +
m

2
cos2 φn

)
=

mr2

2

N∑
n=1

cos2 ψn
��

���
���

���:1(
sin2 φn + cos2 φn

)
=

mr2

2

N∑
n=1

cos2 ψn X
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A.2 Two-Antenna Array (m=2)
A.2.1 Two-Antenna Array Facts
Fact 1

2∑
k=1

cos θk = 0
2∑

k=1

sin θk = 0

Starting with
∑2

k=1 sin θk = 0, we expand using Equation 3.1.2 for θk:

2∑
k=1

sin θk =
2∑

k=1

sin

(
2πk + 1

2
+ θ

)
= sin

(
2π + 1

2
+ θ

)
+ sin

(
4π + 1

2
+ θ

)
= sin

(
pi+

1

2
+ θ

)
+ sin

(
2π +

1

2
+ θ

)
Using sin(α + β) identity twice:

=���:
0

sin π cos

(
θ +

1

2

)
+ cos(π) sin

(
θ +

1

2

)
+���

��:0
sin(2π) cos

(
θ +

1

2

)
+ cos(2π) sin

(
θ +

1

2

)
= − sin

(
θ +

1

2

)
+ sin

(
θ +

1

2

)
= 0 X

Now for
∑2

k=1 cos θk = 0, we expand using Equation 3.1.2 for θk:

2∑
k=1

cos θk =
2∑

k=1

cos

(
2πk + 1

2
+ θ

)
= cos

(
2π + 1

2
+ θ

)
+ cos

(
4π + 1

2
+ θ

)
= cos

(
pi+

1

2
+ θ

)
+ cos

(
2π +

1

2
+ θ

)
Using cos(α + β) identity twice:

=����:
−1

cosπ cos

(
θ +

1

2

)
−����:0

sin(π) sin

(
θ +

1

2

)
+���

��:1
cos(2π) cos

(
θ +

1

2

)
−�����:

0
sin(2π) sin

(
θ +

1

2

)
= − cos

(
θ +

1

2

)
+ cos

(
θ +

1

2

)
= 0 X
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Fact 2
2∑

k=1

δk,n = 0 (A.2.1)

2∑
k=1

δk,n =
2∑

k=1

(r · cosφn [sinφn sin θk + cosφn cos θk])

= r · cosφn

(
sinφn

2∑
k=1

sin θk + cosφn

2∑
k=1

cos θk

)

Here we can apply Fact 1 of the two-antennae scenario and conclude:

= r · cosφn

sinφn
�
�
�
�
��>

0
2∑

k=1

sin θk + cosφn
�
�
�
�
��>

0
2∑

k=1

cos θk

 = 0 X

Fact 3

Zcc =
2∑

k=1

cos2 θk = 1 + cos(2θ)

Zss =
2∑

k=1

sin2 θk = 1− cos(2θ)

Zsc =
2∑

k=1

sin θk cos θk = sin 2θ

Mirroring our work from the Multiple-Antenna Fact 3 derivation above, we begin

with Zss:

Zss =
2∑

k=1

sin2 θk =
2∑

k=1

1− cos 2θk
2

=
2∑

k=1

1

2
− 1

2

2∑
k=1

cos(2θ)

= 1− 1

2

2∑
k=1

cos

(
2

(
2π(k − 1)

2
+ θ

))
= 1− 1

2
[cos(2θ) + cos(2π + 2θ)]

= 1− cos(2θ) X

65



Similarily, Zcc is derived the same way:

Zss =
2∑

k=1

cos2 θk =
2∑

k=1

1 + cos 2θk
2

=
2∑

k=1

1

2
+

1

2

2∑
k=1

cos(2θ)

= 1 +
1

2

2∑
k=1

cos

(
2

(
2π(k − 1)

2
+ θ

))
= 1 +

1

2
[cos(2θ) + cos(2π + 2θ)]

= 1 + cos(2θ) X

Lastly, let’s derive Zsc, first making use of identity sinα · cos β = sin(α+β)+sin(α−β)
2

:

Zsc =
2∑

k=1

sin θk cos θk =
2∑

k=1

sin(θk + θk) + sin(θk − θk)
2

=
1

2

2∑
k=1

sin(2θk)

=
1

2

2∑
k=1

sin

(
2

(
2π(k − 1)

2
+ θ

))
=

1

2
(sin(2θ) + sin(2π + 2θ))

= sin(2θ) X

A.2.2 Fact 4

N∑
n=1

2∑
k=1

δ2k,n = r2
N∑
n=1

cos2 ψn
[
1 +

(
1− 2 sin2 φn

)
cos(2θ) + 2 sinφn cosφn sin(2θ)

]
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N∑
n=1

2∑
k=1

δ2k,n =
N∑
n=1

2∑
k=1

(r · cosψn (sinφn sin θk + cosφn cos θk))
2

= r2
N∑
n=1

cos2 ψn

(
2∑

k=1

(sinφn sin θk + cosφn cos θk)
2

)

= r2
N∑
n=1

cos2 ψn

(
2∑

k=1

(
sin2 φn sin2 θk + 2 sinφn sin θk cosφn cos θk

+ cos2 φn cos2 θk
))

= r2
N∑
n=1

cos2 ψn

[
sin2 φn

2∑
k=1

sin2 θk + 2 sinφncosφn

2∑
k=1

sin θk cos θk

+ cos2 φn

2∑
k=1

cos2 θk

]

Here we apply the results of Fact 3 and simplify

= r2
2∑

k=1

cos2 ψn
[
sin2 φn (1− cos 2θ) + 2 sinφncosφn sin 2θ

+ cos2 φn (1 + cos 2θ)
]

= r2
2∑

k=1

cos2 ψn

[
���

���
���:

1
sin2 φn + cos2 φn − sin2 φn cos 2θ + 2 sinφn cosφn sin 2θ

+ cos2 φn cos 2θ
]

= r2
2∑

k=1

cos2 ψn

[
1 +

(
− sin2 φn +���

��:1− sin2 φn
cos2 φn

)
cos 2θ + 2 sinφn cosφn sin 2θ

]

= r2
2∑

k=1

cos2 ψn
[
1 +

(
1− 2 sin2 φn

)
cos 2θ + 2 sinφn cosφn sin 2θ

]
X
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A.3 Hypothesis Test

We simplify the LRT with standard practice of applied logarithm and removal of

all multiplicative and additive constants:

T
(
d̂k,n

)
=

m∏
k=1

N∏
n=1

1
σ
√
2π
e−

(d̂k,n−d(s)n )
2

2σ2

1
σ
√
2π
e−

(d̂k,n−d0,n+δk,n)
2

2σ2

Cancel common terms.

T
(
d̂k,n

)
=

m∏
k=1

N∏
n=1

�
��
1

σ
√
2π
e−

(d̂k,n−d(s)n )
2

2σ2

�
��
1

σ
√
2π
e−

(d̂k,n−d0,n+δk,n)
2

2σ2

Apply natural logarithm.

T
(
d̂k,n

)
= ln

 m∏
k=1

N∏
n=1

e−
(d̂k,n−d(s)n )

2

2σ2

e−
(d̂k,n−d0,n+δk,n)

2

2σ2


Distribute logarithm. (note : ln (x · y) = ln(x) + ln(y))

T
(
d̂k,n

)
=

m∑
k=1

N∑
n=1

ln

 e−
(d̂k,n−d(s)n )

2

2σ2

e−
(d̂k,n−d0,n+δk,n)

2

2σ2


Distribute logarithm again.

(
note : ln

(
x
y

)
= ln(x)− ln(y)

)

T
(
d̂k,n

)
=

m∑
k=1

N∑
n=1

[
ln

(
e−

(d̂k,n−d(s)n )
2

2σ2

)
− ln

(
e−

(d̂k,n−d0,n+δk,n)
2

2σ2

)]

Cancel exponentials.

T
(
d̂k,n

)
=

m∑
k=1

N∑
n=1

[(
− 1

2σ2

)((
d̂k,n − d(s)n

)2
−
(
d̂k,n − d0,n + δk,n

)2)]
Remove multiplicative constant.

T
(
d̂k,n

)
=

m∑
k=1

N∑
n=1

[
�
�
�
�
�(

− 1

2σ2

)((
d̂k,n − d(s)n

)2
−
(
d̂k,n − d0,n + δk,n

)2)]
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Expand and simplify.

T
(
d̂k,n

)
=

m∑
k=1

N∑
n=1

[
�
��̂dk,n

2
− 2d̂k,nd

(s)
n + 2d(s)n −��

�̂
dk,n

2
− δ2k,n − d20,n + 2d̂k,nd0,n

−2d̂k,nδk,n + 2d0,nδk,n

]
Remove additive constants and negative multiplier.

T
(
d̂k,n

)
=

m∑
k=1

N∑
n=1

[
��−2d̂k,n

(
d(s)n − d0,n + δk,n

)
+
((((

((((
(((

((((

2d(s)n − δ2k,n − d20,n + 2d0,nδk,n

]
Final result: (applies to Equation4.2.2)

T
(
d̂k,n

)
=

m∑
k=1

N∑
n=1

d̂k,n
(
d(s)n − d0,n + δk,n

)
A.4 Generalized Likelihood Estimator and Maximum Likelihood Esti-

mators

Given a conditional probability density function, pr|a (R|A) the goal of the MLE

is to find ”the value of A that most likely caused a value of R to occur” [23].

The well known process of evaluating an MLE is to take the log-likelihood function

of the distribution, differentiating the expression, and setting it equal to zero. This

is called the likelihood equation and takes the form:

∂ln
(
pr|a (R|A)

)
∂A

∣∣∣∣∣
A=âml(R)

= 0

where A = âml(R) refers to the maximum likelihood estimate of A.

Restating Equation 4.2.1:

T
({
d̂k,n

})
=

m∏
k=1

N∏
n=1

1
σ
√
2π
e−

(d̂k,n−d(s)n )
2

2σ2

1
σ
√
2π
e−

(d̂k,n−d0,n+δk,n)
2

2σ2

= 0
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We see that that there is one unknown parameter in each the numerator and the

denominator of our LRT. Thus we want to take the MLE of the numerator to

solve for d
(s)
n and MLE of the denominator to solve for d0,n.

Starting the MLE’s with the numerator (H1):

m∑
k=1

N∑
n=1

∂ln

(
1

σ
√
2π

e−
(d̂k,n−d

(s)
n )

2

2σ2

)
∂d

(s)
n

∣∣∣∣∣∣∣∣∣∣∣
d
(s)
n =d̂

(s)
n ml(d̂k,n)

= 0

Expand the natural log and identify the partial of the constant goes to zero.

m∑
k=1

N∑
n=1 �

�
�
�
�
��>

0

∂ln
(

1
σ
√
2π

)
∂d

(s)
n

+

∂ln

(
e−

(d̂k,n−d
(s)
n )

2

2σ2

)
∂d

(s)
n

∣∣∣∣∣∣∣∣∣∣∣
d
(s)
n =d̂

(s)
n ml(d̂k,n)

= 0

Cancel the natural log and exponential, and remove the scaling factor.

m∑
k=1

N∑
n=1

−
�
�1

2σ2∂
(
d̂k,n − d(s)n

)2
∂d

(s)
n

∣∣∣∣∣∣∣
d
(s)
n =d̂

(s)
n ml(d̂k,n)

= 0

Recognizing that maximizing the likelihood over all N satellites is the same as

maximizing each d
(s)
n independently, we see that:

d̂
(s)
n = arg max

d
(s)
n

 m∑
k=1

−
∂
(
d̂k,n − d(s)n

)2
∂d

(s)
n


Take the partial derivative and set equal to zero.

m∑
k=1

2
(
d̂k,n − d(s)n

)
= 0

Resulting estimation:

d̂
(s)
n =

1

m

m∑
k=1

d̂k,n
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Likewise, for the denominator (H0),

m∑
k=1

N∑
n=1

∂ln

(
1

σ
√
2π

e−
(d̂k,n−d0,n+δk,n)

2

2σ2

)
∂d0,n

∣∣∣∣∣∣∣∣∣∣
d0,n=d̂0,nml(d̂k,n)

= 0

Expand the natural log and identify the partial of the constant goes to zero.

m∑
k=1

N∑
n=1 �

�
�
�
�
��>

0

∂ln
(

1
σ
√
2π

)
∂d0,n

+

∂ln

(
e−

(d̂k,n−d0,n+δk,n)
2

2σ2

)
∂d0,n

∣∣∣∣∣∣∣∣∣∣
d0,n=d̂0,nml(d̂k,n)

= 0

Cancel the natural log and exponential, and remove the scaling factor.

m∑
k=1

N∑
n=1

−∂
(
d̂k,n − d0,n + δk,n

)2
∂d0,n

∣∣∣∣∣∣∣
d0,n=d̂0,nml(d̂k,n)

= 0

Recognizing that maximizing the likelihood over all N satellites is the same as

maximizing each d0,n independently, we see that:

d̂0,n = arg maxd0,n

 m∑
k=1

−
∂
(
d̂k,n − d0,n + δk,n

)2
∂d0,n


Take the partial derivative and set equal to zero.

m∑
k=1

2
(
d̂k,n − d0,n + δk,n

)
= 0

By simplifying we can isolate the delta terms in a summation:

md0,n =
m∑
k=1

dk,n +
m∑
k=1

δk,n

We can recall from Section A.2.1 that the summation of δk,n over k is equal to

zero.

md0,n =
m∑
k=1

dk,n +

�
�
�
���

0
m∑
k=1

δk,n
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And thus arriving at the resultant maximum likelihood estimation:

d̂
(s)
n =

1

m

m∑
k=1

d̂k,n

A.5 Hypothesis Test Distributions
A.5.1 Means

Because the test statistic is Gaussian, we characterize it by the means and variance

under both hypothesis.

Multi-Antenna Array

Starting with the null hypothesis, H0,

µ0 ≡ E
{
T
(
d̂k,n

)}
=

m∑
k=1

N∑
n=1

δk,nE
{
d̂k,n

}
=

m∑
k=1

N∑
n=1

δk,nE {d0,n − δk,n + wk,n}

=
m∑
k=1

N∑
n=1

δk,n

(
��

���:
d0,n

E {d0,n} −����
�:δk,n

E {δk,n}+���
���:0
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(
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Now for alternate hypothesis, H1:

µ1 ≡ E
{
T
(
d̂k,n

)}
=

m∑
k=1

N∑
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δk,nE
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�
�
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��>

0(
m∑
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)
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Two-Antenna Array

Starting with the null hypothesis, H0,

µ0,2ant ≡ E
{
T
(
d̂k,n

)}
=

m∑
k=1

N∑
n=1

δk,nE
{
d̂k,n

}
=

m∑
k=1

N∑
n=1

δk,nE {d0,n − δk,n + wk,n}

=
m∑
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N∑
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(
���

��:
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(
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µ0,2ant = r2
N∑
n=1

cos2 ψn
[
1 +

(
1− 2 sin2 φn

)
cos(2θ) + 2 sinφn cosφn sin(2θ)

]
alternate hypothesis, H1:

µ1,2ant ≡ E
{
T
(
d̂k,n

)}
=

m∑
k=1

N∑
n=1

δk,nE
{
d̂k,n

}
=
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{
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}
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N∑
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(
���

��:d
(s)
n

E
{
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=
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(
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)

=
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d(s)n

�
�
�
�
�
��>

0(
m∑
k=1

δk,n

)
= 0

A.5.2 Variances

Because the test statistic is a linear combination of independent random variables,

the variance of the test statistic is the sum of the individual variances:
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Multi-Antenna

σ2
T ≡ V ar
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T
({
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Two-Antenna

σ2
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=

m∑
k=1

N∑
n=1

V ar
[
d̂k,nδk,n

]
=

m∑
k=1

N∑
n=1

δ2k,nV ar
[
d̂k,n

]

=
m∑
k=1

N∑
n=1

δ2k,n
�
��

�
��*

σ2

V ar
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Two-Antenna Fact 4
m∑
k=1

N∑
n=1

δ2k,n

σ2
T,2ant = σ2r2

N∑
n=1

cos2 ψn
[
1 +

(
1− 2 sin2 φn

)
cos(2θ) + 2 sinφn cosφn sin(2θ)

]
We previously determined that the variance of d̂k,n is equivalently σ2 for both

hypotheses; likewise the test statistic variance is equivalently σ2
T under both hy-

potheses.
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APPENDIX B

Hardware and Software Configuration

B.1 Interesting Notes on Development
B.1.1 Coding Development
Data Grooming

Real-time data is not flawless; the receivers used in simulations and experiments

were configured (as described in an upcoming section) to report data in one

second intervals. Occasionally, a message code was skipped and the requisite data

missing, or the codes are printed in the wrong order. Both error types cause

the data to be incorrectly classified and invalidates the entire collection. These

errors must be recognized and corrected prior to data analysis. As the functions

stand, the corrections must be made by hand by either duplicating a neighboring

time-set’s data or re-ordering the codes in the original data file.

This grooming process is quite intuitive, and not altogether surprising, but the

author would like the reader to be aware of any and all pitfalls in the creation of

these experiments.

Data Alignment

The importance of aligning the data correctly for the computations described in

this text that involve actual receiver-generated data cannot be overstated and thus

I wanted to highlight a few key points here. I write this section for the purpose of

easing the process of recreating the experiment.
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Timing

That the data needs to be organized by time-sample is intuitive but I want to

provide some support for this; I will briefly describe my process. The key to this

requirement is that the Test Statistic and Threshold values both change with time,

related to the GEO-Term as previously discussed.

All the experiments done here used post-processed data and the time-alignment

was a two step process. First the data from each ”receiver” was parsed from its

ASCII strings into a .mat file organized by time-step. Each section contained all

the observation data from each satellite vehicle at each time.

Secondly, we had to ensure that all of the receivers were reporting the same time-

sample at the same iteration during the data analysis. This was slightly more

challenging because at times the receiver output could provide corrupted data (in

various forms) that were thrown out during the parsing process leaving some time-

samples unrepresented. An element-by-element comparison process can (and will)

invalidate the test. This was ultimately completed with a slow, albeit effective,

use of the MATLAB find function.

PRN

PRN alignment within each time-sample has two meanings: equivalent number of

SV’s, and matching line item PRNs. This alignment is important because of the

definition of the Test Statistic:

T ({ρ̂k,n}) =
m∑
k=1

N∑
n=1

ρ̂k,nδk,n

where, as we proved in Section A.1.1, that

m∑
k=1

δk,n = 0

If the PRNs are not equal in number, the second equation becomes invalid and the

δs do not sum to zero. This biases our Test Statistic distribution in unpredictable
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ways and renders the exercise ineffective.

B.2 Hardware

The hardware used for the experiment was:

• Three (3) Furuno (GPA-019) GPS/DGPS H-Field antennas with 10m coaxial

cable connected directly to receivers

• Three (3) NovAtel ProPak v3 GPS receivers

• Three (3) laptop PCs, of various makes and types (NovAtel software requires

PC, not OSX). The laptops were connected to the NovAtel receivers via RS-

232 serial to USB connection adapters.

Figure B.1 shows the actual three-antennae set-up during an unspoofed configura-

tion and Figure B.2 shows a spoofed configuration. It is clear from the unspoofed

photo that the assumption of the antenna array lying on a horizontal plane has

been relaxed; cable length, 5m spacing distance, and roof features lent itself to

this decision. In the spoofed photo, the antennas are not upright and are leaning

against a metal grate; the effect of this placement on the antenna’s performance

is unknown, and clearly not optimal. This was an oversight by the author. Future

experiments should be designed to eliminate these discrepancies.
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Figure B.1: Experiment: unspoofed antenna configuration

Figure B.2: Experiment: spoofed antenna configuration

The antennas were spaced using a measuring tape set for 5m and oriented facing

due North (000◦T ). These measurements were done at the best accuracy of the

author and assumed to be accurate; the effect of any measurement errors would
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be absorbed by the test and were likely to be immeasurably small.

The receiver and laptop configuration for the roof-based tests is shown in Fig-

ure B.3; the set-up for the obstructed view tests is shown in Figure B.4.

Figure B.3: Experiment: unobstructed view receiver configuration

80



Figure B.4: Experiment: obstructed view receiver configuration

The obstructed view was a large brick building as shown in Figure B.5.
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Figure B.5: Experiment: obstructed view obstruction

B.3 Software
Simulations

Spirent GSS 8000 GPS Simulator used SimGen Positioning Application software

(version V4.02.02/.04) for user interface. The following relevant settings were used:

• Start Time (GPS time): 20 Aug 2014, 00:00:00

• Z count - GPS WN rollover: 1
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• GPS week number: 782

• TOW (1.5s): 172800

• TOW (1s): 259200

• Duration: 1 day

• Almanac file: default

• Reference Position: Latitude- N 41◦ 22.353333 Longitude- W 072◦ 5.991667

• Height: 31.455m (geoid)

• Heading type: constant

• Heading +0◦

• Speed: 0m/s

• Motion model version: v2.71 onwards

• Antenna characteristics: default

• Signal types: GPS L1

• Position offset with respect to body axes: varied with antenna

A typical control screen is shown in Figure B.6.

NovAtel Connect software version 1.5.0.171 was used to interface with NovAtel

receivers. Simulation and Experiment configuration for this software is identical;

please see Section B.3 for more details on configuration.

Experiments

For both simulations and experiments, NovAtel Connect version (1.5.0.171 was

used to manage receiver output.
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Figure B.6: A typical Spirent GSS 8000 GNSS simulator software screen shot

NovAtel ProPak v3 Configuration

[29] The NovAtel receivers connected to a standard PC using the NovAtel Connect

software. To configure the devices correctly, a serial baud rate of 22000Hz was

chosen.

NovAtel Connect was configured to write ASCII strings with standard receiver

processing data at intervals of 1 second. These strings were recorded into a pre-

determined text file for post processing. A screen shot of the data collection window

with typical settings is shown in Figure B.7.
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Figure B.7: Typical NovAtel Connect data collection window screen shot

NovAtel Connect ASCII outputted strings:

Figure B.8: Sample receiver-output ASCII codes

Case 1: GPGSV, RANGEA, GPZDA

Case 2: GPGSV, RANGEA, GPZDA

Case 3: GPGSV, RANGEA, GPZDA

Case 4: GPGSV, RANGEA, GPZDA, GPGSA, GPGST

The third value in the GPGST string (2.41) is the RMS pseudorange noise term
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referred to in Section 6.3.1.
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APPENDIX C

Geographic Coordinate Transformations

In Chapter 3 we presented Equation 3.1.1 which is the ENU coordinate frame

version of our individual antennae locations. In Chapter 5 we talk about

converting a latitude/longitude reference point into ENU coordinates for antenna

array generation, and then converting these ENU coordinates to the ECEF

coordinate frame for calculations involving space vehicles. This section is to

present the theory behind the coordinate frames and mathematically how these

transformations are conducted.

C.1 Geodetic

The Latitude-Longitude-Height coordinate system is one of the most common

methods of describing a geographic position on Earth and is known as the

Geodetic coordinate system. Latitude measures North-South position and ranges

from 90◦Sto90◦N while Longitude measures East-West position and ranges from

180◦W to180◦E. Height typically refers to measured distance of an object above

Earth’s sea-level. This can be ambiguous depending on your definition of elevation

and sea-level, but this definition suffices for our work.

Latitude, Longitude, and Height can easily be described in terms of spherical

coordinates, (h, θ, φ), where h = height in m, θ = Latitudeindegrees, and φ =

Longitude in degrees. Figure C.1 shows the Latitude and Longitude grid projected

onto a map of the world.
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Figure C.1: Latitude-Longitude Coordinate Frame [3]

C.2 Local Earth-North-Up

The local Earth-North-Up coordinate frame is a cartesian coordinate system that

consists of a horizontal plane placed tangent to Earth’s surface at any reference

position. This plane does not follow the curved surface of Earth, and so the

further a point is placed from the reference position in a local ENU system

the greater the ”error” or difference from the actual geographic location of the

point. Figure C.2 demonstrates this coordinate frame along with the relationship

between ENU, ECEF, and Lat-Long.

When generating a Local ENU frame, we start with a given Latitude/Longitude

to serve as a reference position and is represented as (0, 0, 0) local. Other ENU

points can be given as unit vectors from this reference point. In other words, the

process is to convert geodetic to ECEF, and then ECEF to ENU. Likewise, to go

back to geodetic coordinates we convert ENU to ECEF and ECEF to geodetic.

Converting a point from ECEF to ENU creates a unit vector from a reference point
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(h, θ, φ) to the new point. The conversion looks like this:
East

North

Up

 =


− sinφ cosφ 0

− sin θ · cosφ − sin θ · sinφ cos θ

cos θ · cosφ cos θ · sinφ sin θ

 ·

XECEF

YECEF

ZECEF

 (C.2.1)

C.3 Earth-Centered, Earth-Fixed

Earth-Centered, Earth-Fixed (ECEF) coordinate frame is one which the center

of the earth is at position (0, 0, 0) and coordinates are presented in a (X, Y, Z)

format. The XECEF axis points out from the center of Earth through the point

(00◦N, 000◦E), or the intersection of the Prime Meridian and the Equator. The

YECEF axis points out of (00◦N, 090◦E), and the ZECEF axis points out of the

top of the geographic North Pole, at (90◦N,AllLong). Figure C.2 shows this

coordinate system.

Converting from geodetic coordinates to ECEF utilizes the following equations:
XECEF

YECEF

ZECEF

 =


(N(θ) + h) · cos θ · cosφ

(N(θ) + h) · cos θ · sinφ

(N(θ) (1− e2) + h) · sin θ


where

N(θ) =
a√

1− e2 sin2 φ

e = first numerical eccentricity of the ellipsoid =
√

0.00669438002290

a = semi-major axis = 6378.137m

We are going to stop the formulation here and refer the reader to the references for

a more technical discussion of Earth’s geodetic coordinate system characteristics
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Figure C.2: ECEF and ENU coordinate system examples

and the calculations necessary to prove these transformations [1],[31]. The

transformation from ECEF back to geodetic coordinates was not used in this

paper but if the reader is interested in the topic I refer her to References [32] and [1].

Converting ENU to ECEF uses the inverse of Equation C.2.1.
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APPENDIX D

List of Abbreviations

(A)WGN (Additive) white Gaussian noise

C/A Coarse acquisition

C/no Carrier to noise ratio

CDF Cumulative distribution function

COTS Commercial off the shelf

ECEF Earth-centered, Earth-Fixed coordinate system

ENU East-North-Up coordinate system

GLONASS Global navigation satellite system

GLRT Generalized likelihood ratio test

GNSS Global navigation satellite system

GPS Global positioning system

L1C Civilian use U.S. Air Force GPS radio-frequency band

(centered at 1575.42 MHz)

L2C Secondary U.S. Air Force GPS radio-frequency band

(centered at 1227.60 MHz)

L5 Civilian use Safety of Life aeronautical broadcast frequency / new

GPS

band
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LRT Likelihood ratio test

MLE Maximum likelihood estimator

NMEA National Marine Electronics Association

P(Y) Precision military use U.S. Air Force GPS radio-frequency band (cen-

tered on 1575.42 MHz)

PD Probability of detection

PDF Probability of density function

PFA Probability of false alarm

PNT Positioning, navigation, and timing

PRN Pseudorandom noise

RF Radio-frequency

RMS Root mean squared

ROC Receiver operating characteristic

SNR Signal to noise ratio

SV Space vehicle

TOA Time of arrival

TOW Time of week

UERE User estimated range error
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APPENDIX E

List of Symbols

a Semi-major axis of Earth

bk Receiver clock bias

b̂k Estimated receiver clock bias

d0,n Distance from center of antenna array to satellite n

dk,n Distance from antenna k to satellite n

ˆdk,n Estimated distance from antenna k to satellite n

d
(s)
n Spoofed distance from all antennas to SV n

e First numerical eccentricity of the ellipsoid

ek East coordinate of antenna k in local ENU coordinate frame

EAST General East coordinate in local ENU coordinate frame

H Matrix of direction cosines pointing from approximated position

to navigation satellites.

h Component of H matrix

h Height (altitude) of position in geodetic coordinate frame

H0 Null hypothesis in Neyman-Pearson hypothesis testing formula-

tion

H1 Null hypothesis in Neyman-Pearson hypothesis testing formula-

tion

k Antenna identification number
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LG Generalized likelihood ratio

m Number of antennas in detector array

n SV identification number

N Number of SV’s in visible constellation

N Gaussian normal distribution

nk North coordinate of antenna k in local ENU coordinate frame

NORTH General North component in local ENU coordinate frame

Q() Gaussian right tail probability (1 - cumulative distribution func-

tion) ”Q Function”

r radius of antenna array

R1 Critical region 1: where a decision is made in hypothesis testing

R(τ) Autocorrelation value

SVn Space vehicle n

t time

T Test statistic

T2ant Test statistic for two-antenna problem

T0 Test statistic conditioned on null hypothesis

T1 Test statistic conditioned on alternate hypothesis

uk Height component of antenna k in local ENU coordinate system

UP General height component in local ENU coordinate frame

wk,n White Gaussian noise observed
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XECEF X component of position in ECEF coordinate frame

xxx◦T Heading in degrees True

YECEF Y component of position in ECEF coordinate frame

ZECEF Z component of positino in ECEF coordinate frame

α Dummy variable used for identities

β Dummy variable used for identities

γ Ratio of array radius to noise standard deviation

δk,n Spatial offset of range measurement for antenna k and satellite

n

∆t Change in time

∆x Change in position component vector used in GPS position so-

lution

∆ρ Change in psedorange vector used in GPS position solution

θ Arbitrary array orientation angle, Latitude in geodetic coordi-

nate system

θk Angular position description of antenna k in antenna array

θ̂x Estimated angular position description of antenna k in antenna

array

λ threshold used in hypothesis test

µ Mean of probability distribution

µ0,2ant Mean of null hypothesis test statistic for two-antenna test

ρk,n Pseudorange from antenna k to satellite n
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σ Standard deviation for probability distribution

σ2 Variation of probability distribution

σ2
T,2ant Variation of test statistic for two-antenna test

τ Chip offset for PRN-code correlation

φ Longitude in geodetic coordinate system

ψn Elevation of space vehicle n above horizon (as seen by antenna

array)

Φ Cumulative distribution function for Gaussian distributed ran-

dom variable
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