
Architecture for Issuing DoD Mobile Derived Credentials

David A. Sowers

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

In

Computer Engineering

T. Charles Clancy, Chair

Sandeep Shukla

Luiz A. DaSilva

May 2, 2014

Falls Church, Virginia

Keywords: Derived Credentials, Public Key Infrastructure, Common Access Card,

Department of Defense, x509, Mobile Phone

Copyright 2014, David A. Sowers

Architecture for Issuing DoD Mobile Derived Credentials

David A. Sowers

ABSTRACT

With an increase in performance, dependency and ubiquitousness, the necessity for secure

mobile device functionality is rapidly increasing. Authentication of an individual’s identity is the

fundamental component of physical and logical access to secure facilities and information systems.

Identity management within the Department of Defense relies on Public Key Infrastructure

implemented through the use of X.509 certificates and private keys issued on smartcards called

Common Access Cards (CAC). However, use of CAC credentials on smartphones is difficult due

to the lack of effective smartcard reader integration with mobile devices. The creation of a mobile

phone derived credential, a new X.509 certificate and key pair based off the credentials of the CAC

certificates, would eliminate the need for CAC integration with mobile devices This thesis

describes four architectures for securely and efficiently generating and delivering a derived

credential to a mobile device for secure communications with mobile applications. Two

architectures generate credentials through a software cryptographic module providing a LOA-3

credential. The other two architectures provide a LOA-4 credential by utilizing a hardware

cryptographic module for the generation of the key pair. In two of the architectures, the Certificate

Authority’s (CA) for the new derived credentials is the digital signature certificate from the CAC.

The other two architectures utilize a newly created CA, which would reside on the DoD network

and be used to approve and sign the derived credentials. Additionally, this thesis demonstrates the

prototype implementations of the two software generated derived credential architectures using

CAC authentication and outlines the implementation of the hardware cryptographic derived

credential.

iii

Acknowledgements

I would like to first thank the US Coast Guard for the opportunity to attend Virginia Tech while

serving as an active duty officer. The graduate school program through the Coast Guard is one of

the most beneficial and rewarding experience of my military career.

I would like to thank Dr. Charles Clancy for all your support, guidance, and leadership throughout

the thesis and research process.

A very special thanks to Kiran Karra for his help in compiling the python code used for the

prototype implementation portion of the thesis. Your help was greatly appreciated.

iv

Contents

Acknowledgements .. iii

Contents ... iv

1 Introduction ... 1

2 Review of Standards and Prior Work ... 3

2.1 HSPD-12 .. 3

2.2 FIPS 201 ... 4

2.2.1 NIST SP 800-73-3... 8

2.2.2 NIST Special Publication 800-78-3 .. 10

2.2.3 X.509 Certificate Policy for the U.S. Federal PKI Common Policy Framework ... 13

2.2.4 NIST SP 800-63-2... 14

2.2.5 FIPS 140-2 .. 15

2.2.6 NIST SP 800-157 .. 16

2.3 Public Key Infrastructure ... 19

2.4 X.509 Certificates... 26

2.5 Prior Work .. 29

2.5.1 Hardware vs. Software Cryptographic Module .. 30

3 DoD PKI ... 33

3.1 Common Access Card .. 33

3.2 DoD PKI Architecture .. 35

v

3.3 DoD X.509 Certificates .. 36

4 Derived Credentials .. 40

4.1 Overview .. 40

4.2 Software Generated LOA-3 Derived Credential .. 41

4.2.1 CAC Signed Derived Credential ... 43

4.2.2 Server-Driven Derived Credential .. 46

4.3 Hardware Generated Derived Credential ... 48

4.3.1 Crypto Micro-SD .. 49

4.3.2 CAC-Signed Hardware Derived Credential.. 50

4.3.3 User-Driven Hardware Derived Credential .. 52

5 Prototype Implementation ... 54

5.1 Test Environment ... 54

5.1.1 OpenSSL ... 55

5.1.2 OpenSC ... 56

5.2 Mock DoD Certificate Authority Setup ... 56

5.2.1 OpenSSL Configuration File .. 56

5.2.2 DoD Mock Certificates ... 57

5.2.3 Gemalto PIV II Smart Cards Initialization ... 59

5.3 Implementation... 61

5.3.1 CAC Signed Derived Credential ... 61

vi

5.3.2 Server-Driven Derived Credential .. 65

5.3.3 Hardware Token Credentials .. 68

6 Conclusion .. 72

6.1 Summary .. 72

6.2 Recommendations for Future Work ... 74

References ... 76

Appendix A: Actual DoD CAC Certificates ... 79

A.1: CAC Authentication Certificate .. 79

A.2: CAC Digital Signature Certificate .. 81

A.3: CAC Key Management Key ... 83

Appendix B: OpenSSL Configuration File ... 85

Appendix C: Mock DoD CA Setup .. 91

Appendix D: User Certificates on Gemalto PIV II Smart Card.. 97

D.1 User1 Authentication Certificate ... 97

D.2 User 1 Digital Signature Certificate ... 100

Appendix E: CAC Signed Derived Credential ... 103

E.1 Python Implementation Code ... 103

E.2 CAC Signed DC Results .. 110

E.3: CAC Signed Derived Credential Certificate ... 111

Appendix F: Server Driven Derived Credential ... 114

vii

F.1: Python Implementation Code .. 114

F.2 Server Driven Output .. 121

F.3 Server Driven Derived Credential Certificate .. 122

viii

List of Figures

Figure 2.2.1: Use of Derived Credentials [10] .. 17

Figure 2.3.1: CA Hierarchical Model ... 20

Figure 2.3.2: Public Key Data Encryption .. 22

Figure 2.3.3: Public Key Data Decryption.. 22

Figure 2.3.4: Digitally Signing a Message [15] .. 23

Figure 2.3.5: Verifying a Digital Signature [15]... 24

Figure 2.3.6: Digitally Signing and Encrypting a Message [15] .. 25

Figure 2.3.7: Decryption and Verification Process with Public Key Cryptography [15] 25

Figure 2.4.1: X.509 Certificate [29].. 27

Figure 3.1.1: Sample Common Access Card [17] .. 34

Figure 3.2.1: DoD Root CA 2 Hierarchy [18] .. 35

Figure 3.3.1: DoD CAC Authentication Certificate ... 37

Figure 4.3.1: Motorola CRYPTR Micro SD Card [21] .. 50

Figure 5.1.1: Test Setup .. 55

Figure 5.3.1: QR-Code for a PKCS#12 File on Apache Server ... 64

Figure 5.3.2: Certificate Signed by Smart Card .. 65

Figure 5.3.3: Derived Credential Signed By DoD DC CA ... 67

ix

List of Tables

Table 2.1: Authentication of Logical Access [4] .. 8

Table 2.2: Relationship Between PIV and E-Authentication Assurance Levels [4] 8

Table 2.3: PIV Card Application Authentication and Key Reference [5] 10

Table 2.4: Algorithm and Key Size Requirements [6] ... 11

Table 2.5: Key Reference Values [6] .. 12

Table 2.6: Algorithm Identifiers [6].. 12

Table 2.7: PIV Card Keys: Key Reference and Algorithms [6] ... 13

1

1 Introduction

On August 27, 2004, President G.W. Bush signed into effect the Homeland Security

Presidential Directive 12 (HSPD-12) Policy for a Common Identification Standard for Federal

Employees and Contractors. The primary purpose of HSPD-12 was the mandatory implementation

of a government wide standard for secure and reliable form of identification [1]. In response to the

directive, the National Institute of Standards and Technology (NIST) provided implantation

instructions through the delivery of the Federal Information Processing Standard 201 (FIPS 201).

The Common Access Card (CAC), already in use by the Department of Defense (DoD) at the time,

was the government’s vehicle to comply the requirements set forth by HSPD 12 and FIPS 201.

The CAC allows the DoD to successfully implement a Public Key Infrastructure (PKI)

architecture, securely storing all user x509 certificates and private keys which are used for

authentication for building access, computer and file access and most importantly email access

and digital signatures. Currently, the DoD requires that all persons accessing network files and

email must use a CAC for authentication. The use of a CAC with a mobile device requires a USB

or Bluetooth interface using a software middleware for interaction between the device and the

CAC. With the recent popularity and reliance of mobile devices drastically increasing, the ability

to securely authentication via a mobile device is burdensome or not practical. The current solution

to DoD mobile security without the use of a CAC relies on derived credentials.

A derived credential is an X.509 certificate that is generated based off the credentials of

the Personal Identity Verification (PIV) card certificates. These new certificates and private keys

2

would then allow the user authenticate to computer networks, servers and files from their mobile

device. While derived credentials have been a hot topic in recent years, standards and policy are

not in place for the generation and delivery of these credentials. Scalability, security and efficiency

will all play a large role in the architecture used for the generation and delivery of derived

credentials to DoD members. With over 1.4 million active duty men and women, and 718,000

civilian personnel [2], the process for generating derived credentials must be scalable and efficient;

importing it to the mobile device and using the derived credential must also be extremely secure

and resistant to attack. This thesis comprehensively details four separate architectures for

generation and delivery of derived credential for DoD mobile devices. Additionally, this thesis

demonstrations a prototype implementation of two of the architectures for the creation of DoD

mobile derived credentials that will allow Android and iPhone devices to securely access DoD

computer networks and files.

3

2 Review of Standards and Prior Work

This section evaluates relevant standards and previous work conducted in the field.

2.1 HSPD-12

President G.W. Bush’s Homeland Security Presidential Directive 12, a “Policy for a

Common Identification Standard for Federal Employees and Contractors” required the

development and implementation of a mandatory standard for secure and reliable forms of

identification for all federal employees and contractors [1]. The main purpose of this directive was

to develop and use a secure and reliable method of identification that: “(a) is issued based on sound

criteria for verifying an individual employee's identity; (b) is strongly resistant to identity fraud,

tampering, counterfeiting, and terrorist exploitation; (c) can be rapidly authenticated

electronically; and (d) is issued only by providers whose reliability has been established by an

official accreditation process” [1].

 As a response to HSPD-12, NIST and their Computer Security Division started a new

program which would develop all the documentation, standards, and policy for improving the

identification and authentication of Federal employees and contractors for access to computer

networks and information system [3]. The resulting Federal Information Protection Standard

(FIPS) 201, PIV of Federal Employees and Contractors was developed, approved and issued on

February 25, 2005.

FIPS 201 incorporated three technical Special Publications (SP); NIST SP 800-73

“Interfaces for Personal Identity Verification”, NIST SP 800-76 “Biometric Data Specification for

4

Personal Identity Verifications”, and NIST SP 800-78 “Cryptographic Algorithms and Key Sizes

for Personal Identity Verification” [3]. In addition to these publications, several guidelines,

reference implementations and conformance tests were identified by NIST for the implantation of

their PIV system. These guidelines include, but are not limited to, how to “implement and use the

PIV system; protect the personal privacy of all subscribers of the system; authenticate identity

source documents to obtain correct legal name of the person applying for the PIV card,

electronically obtain and store biometric data from PIV system subscriber; create a PIV card that

is personalized with data needed by the PIV system to later grant access to the subscriber to Federal

facilities and information systems; assure appropriate levels of security for all applicable Federal

applications; and provide interoperability among Federal organizations using the standards.” [3].

All publications, guidelines and standards can be found on NIST website

(http://csrc.nist.gov) under their publications tab. Below, this thesis will highlight the relevant

details contained in the NIST publications which are pertinent to this thesis.

2.2 FIPS 201

The main purpose of FIPS 201 is to specify the architecture and technical requirements for

common identification standards for the Federal employees and select contractors. FIPS 201

mandates the use of a PIV Card that can accurately determine a Federal employee’s identity for

access to buildings, computer systems, and data. In August 2013, the updated FIPS 201-2 was

released. One of the major changes to FIPS 201-2 was the inclusion of Derived PIV Credentials.

The standards allows for PIV cards to be used as the basis for issuing Derived PIV Credentials in

accordance with NIST SP 800-157, Guidelines for Derived Personal Identity Verification

5

Credentials [4]. NIST SP 800-157 is still in draft form at the time of this writing, therefore, no

requirements have been finalized for the issuance of derived credentials.

Sections 1-3 of FIPS 201-2 defines who is authorized a PIV credential and the proofing

process on how to issue the cards. It is essential to accurately determine a person’s identity and

authority for access prior to issuing a credential. The PIV Card is the primary component to the

PIV system and is “a credit card-size form factor, with one or more embedded integrated circuit

chips (ICC) that provide memory capacity and computational capability.” [4]. The PIV Card will

be initiated with card writers, and will authenticate through card readers, Personal Identification

Number (PIN) input devices and biometric readers at access points [4].

Sections 4-6 of FIPS 201-2 provides detailed technical specifications of components and

processing required for interoperability of PIV Cards with personal authentication, access control,

and PIV card management systems across Federal government. Section 4 defines the PIV Front-

End Subsystem, including the PIV Card logical characteristics. At a minimum, the PIV Card must

store a PIN, a Cardholder Unique Identifier (CHUID), PIV authentication data (one asymmetric

private key and a corresponding public key certificate), two fingerprint templates, electronic facial

image, and card authentication data (one asymmetric private key and corresponding certificate)

[4].

For government issued email accounts, the PIV Card must contain an asymmetric private

key and corresponding X.509 certificate for both digital signature and key management.

Cryptographic operations with this key are performed only through the contact interface. The PIV

Card shall implement the following cryptographic operations and support functions as defined in

6

SP 800-78 and SP 800-73: “RSA or elliptic curve key pair generation, RSA or elliptic curve private

key cryptographic operations, and importation and storage of X.509 certificates.” [4]. While all

cryptographic operations must be performed on the card, message hashing may be performed off-

card.

There are numerous slots for keys on the PIV card, with some being mandatory and some

options. The PIV authentication key shall be asymmetric private key supporting card

authentication for an interoperable environment and it is mandatory. An asymmetric Card

authentication key is a mandatory private key that supports card authentication for an interoperable

environment. A symmetric (secret) card authentication key is optional. A digital signature key is

an asymmetric private key supporting document signing and is mandatory for all users with

government-issued email. A key management key is an asymmetric private key supporting key

establishment and transport and is optional. Lastly, a card management key is a symmetric key

used for personalization and post issuance activities and is optional. All PIV cryptographic keys

shall be generated within a FIPS 140 validated cryptographic module with overall validation at

Level 2 or above [4] [9].

Section 5 is a critical section of FIPS 201-2 for the purposes of this project, as it defines

PIV key management requirements. The PIV Card authentication system will use a hierarchical

PKI managed by the Federal PKI. All cryptographic algorithms and key sizes are specified in the

NIST SP 800-78, which is detailed below. All certificates are issued in accordance with the X.509

Certificate Policy for the U.S. Federal PKI Common Policy Framework (COMMON) and the

7

contents of the X.509 certificates associated with the PIV private key are based on the X.509

Certificate and CRL Profile for the Common Policy (PROF) [4].

Lastly, Section 6 defines the PIV Cardholder Authentication using PIV asymmetric

cryptography. For authentication using the PIV Authentication certificate (PKI-AUTH), the PIV

Authentication certificate is read from the PIV Card. The certificate is then checked for validity.

The cardholder is then prompted to submit a PIN, and the submitted PIN is used to activate the

card. The card reader then issues a challenge string to the card and requests an asymmetric

operation in response. The challenge is signed using the PIV authentication private key and is

returned. The signature is then verified by the relying system. The unique identifier from the PIV

authentication certificate is extracted and passed as input to the access control decision. For

authentication with the Card Authentication certificate (PKI-CAK), the same steps are followed

as with the PIV Authentication certificate, except the Card Authentication certificate is used for

validity, cryptographic responses, and reference and there is no input of a PIN prior to

cryptographic operations being performed. PKI-AUTH offers a level of assurance (LOA)

comparable LOA-4 which is very high confidence in the asserted identity’s validity. Comparably,

PKI-CAK only offers LOA-2 which is some confidence in the asserted identity validity [4]. Table

1 below, taken from FIPS 201 [4], details the PIV assurance levels attained through PIV

authentication mechanisms.

8

Table 2.1: Authentication of Logical Access; NIST FIPS 201. Available at http://csrc.nist.gov/. Used under fair use, 2014 [4]

The levels of assurance from Table 2.1 are very similar to the levels of assurance that are

contained in M-04-04 [12], which are detailed in section 2.3.4 below. Table 2.2 below, also from

FIPS 201 [4], shows the relationship between PIV and E-Authentication assurance levels.

Table 2.2: Relationship Between PIV and E-Authentication Assurance Levels; NIST FIPS 201. Available at http://csrc.nist.gov/.

Used under fair use, 2014 [4]

2.2.1 NIST SP 800-73-3

The NIST SP 800-73 contains all of the technical specifications to interface with the PIV

Card for retrieval and use of the identity credentials it contains. This is critical information for the

prototype implementation demonstration performed for this thesis. SP 800-73 identifies the PIV

9

data elements’ identifiers, structure and format. Lastly, it gives us the client application

programming interface and card command interface for use with the PIV Card [5].

Each PIV card has five mandatory data objects. The Card Capability Container (CCC)

facilitates compatibility of Government Smart Card Interoperability Specification applications

with End-Point PIV Cards. The Card Holder Unique ID (CHUID) is a number assigned to each

PIV Card in accordance with the Technical Implementation Guidance: Smart Card Enabled

Physical Access Control System (TIG SCEPACS). The X.509 Certificate for PIV Authentication

and its associated private key is used specifically to authenticate the PIV card and the cardholder.

Cardholder Fingerprints hold the primary and secondary fingerprints in accordance with FIPS 201.

Lastly, the security object is used to map ContainerIDs in the PIV data model to the 16 data groups

specified in the Machine Readable Travel Documents (MRTD) [5]. Along with these five

mandatory data objects, there are twenty-eight optional data elements of FIPS-201. The optional

data elements, essential for the purposes of this thesis, are the X.509 Certificates for digital

signatures and key management. The certificate and private key for digital signature is used to sign

a document or email and encryption as well. The digital signature private key is PIN protected

with “PIN always” meaning that the PIN is always required in order to use the private key. Also

essential to PKI, the PIV Card has non-mandatory retired x509 certificates. Up to twenty retired

certificates can be stored on the PIV Card.

Table 2.3, taken from SP 800-73-3, shows PIV Card Application key reference values

reserved for use [5]. This table identifies the key reference value, the key type, and the security

condition for the use for the authentication key and the digital signature key. For the PIV

10

authentication, PIV Digital Signature, and PIV key management keys, the specific values are found

in SP 800-78.

Table 2.3: PIV Card Application Authentication and Key Reference; NIST SP 800-73-3. Available at http://csrc.nist.gov/. Used

under fair use, 2014 [5]

2.2.2 NIST Special Publication 800-78-3

In accordance with FIPS 201, NIST SP 800-78 specifies the cryptographic algorithms and

key sizes for the PIV system. FIPS 201 identified the PIV Authentication Key, Digital Signature

Key, and the Key Management key as cryptographic keys for use with the PIV card [4]. Table 2.4:

, from section 3.1 of SP 800-78, identifies the algorithm and key size requirements for each

certificate identified in FIPS 201 [6]. After 12/31/2013, and in effect currently, all key sizes must

be RSA 2048-bits for all keys. This is critical for the prototpe implementaiton portion of the thesis

and the generation of public/private keys for derived credentials.

11

Table 2.4: Algorithm and Key Size Requirements; NIST SP 800-78-3. Available at http://csrc.nist.gov/. Used under fair use, 2014

[6]

The application programming interface, the End-Point PIV Client Application

Programming Interface, and a set of mandatory card commands are defined in section 5 of NIST

SP 800-78. When interfacing with the PIV Card, one-byte identifiers are used that specifies a

cryptographic key according to its PIV Key Type [6]. Table 2.5 shows the key reference values

for each specific PIV key. The key reference values are critical when interfacing with the PIV card

or CAC card during the prototype implementation. In the implementation section, the digital

signature key, reference value “9C” will be used in initializing the Gemalto smart cards and also

in the demonstration.

12

Table 2.5: Key Reference Values; NIST SP 800-78-3. Available at http://csrc.nist.gov/. Used under fair use, 2014 [6]

The PIV Card algorithm identifier is another one-byte identifier that specifies the algorithm

and the size of the key. The algorithm identifiers are detailed in Table 2.6, which is from section

6.2 of NIST SP 800-78 [6]. When initializing the Gemalto Smart Cards for the implementation

portion of the thesis, the algorithm identifier “07” for RSA 2048-bit keys is required.

Table 2.6: Algorithm Identifiers; NIST SP 800-78-3. Available at http://csrc.nist.gov/. Used under fair use, 2014 [6]

Lastly, Table 2.7, from NIST 800-78 summarizes the set of algorithms supported for each

key reference value based on time periods.

13

Table 2.7: PIV Card Keys: Key Reference and Algorithms; NIST SP 800-78-3. Available at http://csrc.nist.gov/. Used under fair

use, 2014 [6]

2.2.3 X.509 Certificate Policy for the U.S. Federal

PKI Common Policy Framework

The certificate policies which are used for all PKI components of all Federal Enterprise

Architectures is defined in the X.509 Certificate Policy for the U.S. Federal PKI Common Policy

Framework (COMMON). The COMMON requires the use of FIPS 140 validated cryptographic

modules. It also states that all keys must be either 2048-bit RSA keys or 256-bit elliptic curve keys

along with SHA-256 and SHA-384 hash algorithms [7]. If an entity is associated with a Secure

Hash Algorithm version 1 (SHA-1) Federal Root Certificate Authority (CA), then it can issue a

SHA-1 certificate. The PKI policies within the COMMON provides security management services

of key generation/storage, certificate generation, modification, re-key, and distribution, certificate

14

revocation list generation and distribution, directory management of certificate related items,

certificate token initialization/programming/management, system management functions [7].

Section 3 of the COMMON defines the requirements for the distinguished name

characteristics of the X.509 certificates. These vary depending on the status of the person (military,

federal employee, contractor, etc.). With the implementation of derived credentials, there has been

a change proposal that would add additional distinguished name characteristics for derived

credential certificates [10]. For almost all X.509 certificates the Organization will be U.S.

Government, the first Organizational Unit will be the department, the second Organizational Unit

will be the agency, and the third Organizational Unit will be the structural container (PKI). The

Common Name of the certificates vary. Section 3.2 of the COMMON requires that when a party

named in a certificate generates its own keys, that party shall be required to prove possession of

the private key, which corresponds to the public key in the certificate request. For signature keys,

this may be done by the entity using its private key to sign a value supplied by the CA. The CA

can then validate the value by using the party’s public key [7].

2.2.4 NIST SP 800-63-2

NIST SP 800-63 supplements OMB guidance, E-Authentication Guidance for Federal

Agencies (OMB 0404) [12] that defines four levels of authentication (LOA) Levels 1 to 4, in terms

of the consequences of the authentication errors and misuse of credentials [8]. Level 1 is the lowest

assurance and Level 4 is the highest. For the purposes of this thesis, we are most concerned with

levels 3 and 4. Level 3 provides high confidence that the asserted identity is valid, while level 4

provides very high confidence that the asserted identity is valid [8].

15

LOA-3 provides multi-factor remote network authentication. Level 3 authentication is

based on the proof of possession of a key or one-time password through a cryptographic protocol.

The key must be, at a minimum, two-factor authentication protected. LOA-3 may be in 3 different

token forms; “soft” cryptographic tokens, “hard” cryptographic tokens, and “one-time password”

device tokens. For authentication with an LOA-3, the user must prove control of the token (first

factor), and must unlock the token with either a password (PIN) or biometric (second factor) [8].

LOA-4 is intended to provide the highest practical remote network authentication

assurance. LOA-4 is very similar to LOA-3, except LOA-4 requires the use of a hardware

cryptographic token in accordance with FIPS 140 Level 2 (discussed in Section 2.2.5 below) or

higher overall with at least FIPS 140 Level 3 physical security. A hardware cryptographic token

helps insure two-factor authentication [8].

2.2.5 FIPS 140-2

FIPS 140-2 specifies the security requirements for cryptographic modules utilized within

a security system. FIPS 140-2 defines four security levels; Level 1, Level 2, Level 3, and Level 4.

For the purposes of this thesis, Level 1, Level 2 and Level 3 are applicable [9].

Security Level 1 is the lowest of the security level. No specific physical security

mechanisms are required beyond basic requirement for production-grade components. “An

example of a Security Level 1 cryptographic module is a personal computer (PC) encryption

board” [9]. Security Level 1 software components on of a cryptographic module to be executed on

a general purpose computing system using an unevaluated operating system.

16

Security Level 2 enhances Security Level 1 by adding the requirement of tamper-evidence.

Tamper-evidence can include coatings or seals which reveal if a module has been tampered with

or removed. Security Level 2 also requires, at a minimum, role-based authentication. The operator

must authenticate to the cryptographic module in order determine permissions of the operator and

perform a corresponding set of services. The software component of a Level 2 cryptographic

module may only be executed on a general purpose computing system with an operating systems

that meets the requirements of FIPS 140 [9].

Level 3 extends on the tamper-evident physical security mechanisms of Security Level 2.

Security Level 3 attempts to prevent the intrusion into the cryptographic module. The physical

security of Level 3 is intended to have a high probability of detecting and responding to attempts

at physical access, use or modifications of the cryptographic module. These physical security

mechanism can be achieved through the use of strong enclosures or tamper detection/response

circuitry [9].

2.2.6 NIST SP 800-157

The newest release of FIPS 201-2 specifies a new derived credential for use with mobile

devices where a PIV card is not practical. The purpose of the derived credential is designed to

serve as a Federal government-wide standard for a secure and reliable identity credential that can

be used across all agencies. The original FIPS 201 specified that all credentials, certificates and

keys, be stored on the PIV card. However, while using a PIV card with a desktop or laptop works

well, the use of a PIV card with mobile devices is not practical. FIPS 201-2 authorizes the use of

a derived credential for use with mobile device. NIST SP 800-157 is being written to provide the

17

technical guidelines for implementation of Derived PIV Credentials [10]. Currently, SP 800-157

is in draft form and should be fully published soon. Figure 2.2.1: , from SP 800-157, shows the

intended use of derived credentials.

Figure 2.2.1: Use of Derived Credentials; NIST SP 800-157. Available at http://csrc.nist.gov/. Used under fair use, 2014 [10]

NIST 800-63 defines a derived credential “as a credential issued based on proof of

possession and control of a token associated with a previously issued credential, so as not to

duplicate the identity proofing process” [8]. SP 800-63 requires that a derived credential shall only

be issued after the verification of the applicants identity has been completed using the PIV

Authentication key on the applicants existing PIV card. A derived credential with LOA-3 can be

issued remotely or in person in accordance with SP 800-63. If a remote electronic session is used

18

for delivery, then encryption shall be used. A derived credential with LOA-4 can be issued in

person only and must use a biometric authentication of the applicant. SP 800-157 also does not

preclude the issuance of multiple Derived PIV Credentials to the same applicant on the basis of

the same PIV card [10].

Derived credentials must be issued as either id-fpki-common-pivAuth-

derived-hardware (LOA-4) or the id-fpki-common-pivAuth-derived (LOA-3)

policy of the COMMON [7]. The id-fpki-common-pivAuth-derived-hardware and

id-fpki-common-pivAuth-derived are not currently listed in the COMMON and are

both included in a change proposal that would include them in the revision. The cryptographic

algorithms and key size requirements are the same as those required for the PIV card authentication

certificate from SP 800-78 [6] [10]. For an LOA-4 derived credential, the key pair shall be

generated within a hardware cryptographic module that is FIPS 140 level 2 validated or higher.

The hardware cryptographic module must also provide level 3 physical security to protect the

private key while in storage and that does not permit exportation of the private key. For an LOA-

3 derived credential, the key pair shall be generated within a cryptographic module that has been

validate to FIPS 140 level 1 or higher [10].

SP 800-157 also specifies the types of approved cryptographic tokens that may be used to

use on mobile devices. The token may be hardware or software. There are three types of removable

(non-embedded) hardware cryptographic tokens approved for derived credentials storage of the

private keys. A secure SD card with cryptographic module of any size (original, mini, or micro)

may be used. For most mobile devices, the micro SD card with cryptographic module is most

19

likely. A Universal Integrated Circuit Card (UICC) is the second approved non-embedded option.

The UICC represents the new generation Subscriber Identity Module (SIM) card. The UICC is

currently an unlikely solution since it would require the mobile device carrier to allow DoD access

to the SIM card in the phone. The last option is a USB token with cryptographic module. This

option would not be likely for use with mobile devices as it would require the user to carry around

a token that connects to the mobile device through some USB sized cable. Embedded

cryptographic tokens embedded within the mobile device may be used with private keys and their

associated certificate. These modules may be either hardware cryptographic modules or software

cryptographic modules that run on the device. All private keys stored on a hardware cryptographic

module must be PIN protected, in the same manner as the keys on a PIV card. For a LOA-3,

software cryptographic module key, a password based mechanism shall protect the private key. In

addition to an authentication key and certificate, SP 800-157 authorizes the storage of other keys,

such as the digital signature and key management private key and corresponding certificates [10].

2.3 Public Key Infrastructure

PKI is defined as a system of public key encryption using digital certificates from

Certificate Authorities and other registration authorities that verify and authenticate the validity of

each party involved in an electronic transaction [13]. In PKI, a digital certificate and associated

public and private key pair are associated to a specific user through a Certificate Authority (CA).

A CA is a trusted entity that issues that certificates to users only after verifying their identity.

Having a digital certificate from a trusted CA allows any entity to confidently accept the identity

of the person associated with the digital certificate [14]. CAs can be arranged in multiple different

20

topologies with each CA able to use different standards or procedures to verify the identity of the

person whom they issue certificates [35]. The topology in which the CAs are arranged depends on

the needs of the particular entity using the certificates. A CA hierarchy has a highest level of Root

CA that is deployed. Then CAs are deployed that are subordinate to the Root CA. Then the

subordinate CAs can issue the certificates to the users themselves [35]. A drawback to this

topology is a single point of value at the Root CA level. However, by disturbing the certificate

issuing to multiple subordinate CAs, an organization is able to handle a large scale PKI

architecture. The figure below represents a CA hierarchy.

Figure 2.3.1: CA Hierarchical Model

Public key encryption is a cryptographic technique used to securely communicate on

insecure networks and verify the identity of a user with a digital signature. In public key

encryption, an asymmetric key pair is generated for each user. The keys are different in that

knowledge of one key cannot lead to the derivation of the other key. One key is a public key and

is made publicly available through some sort of database. The other key is a private key and should

only be known/possessed by the user. The concept of public key encryption through asymmetric

keys relies on the principal that the user is the only person in the world with knowledge of the

private key. While the keys are different from each other, they are related in the fact that one key

21

can be used for encryption while the other can be used for decryption. Public key cryptography

through the use of RSA keys is secure based on the fact that factorization of the large integers used

to create the keys, while possible, has so far resisted all attempts to algorithmically feasible

computation [14].

After the generation of a public/private key pair, a Certificate Signing Request (CSR) is

created. The CSR contains identifying information that will be used to populate the user’s digital

certificate that will be signed by the CA. The CSR is an encrypted file that contains information

such as common name, organization name, organizational unit name, country, email, and the

public key. Once the CSR is ready, it is sent to the CA for approval. If approved, the CA will

generate a X.509 certificate signed by the CA private key that can now be used by the user [14].

Public key cryptography enables a number of secure digital services that were unavailable

or not possible with symmetric ciphers. Encryption through the use of public key cryptography is

rather simple; data can be encrypted with the public key of a user and then decrypted with the

private key. However, because encryption and decryption using 1024-bit or 2048-bit asymmetric

keys can be computationally expensive, often a one-time symmetric key is generated and used to

encrypt the data, encrypted with the public key of the intended recipient, and exchanged [14].

When extracted, the symmetric key is then used to encrypt and decrypt the data for the remainder

of the sessions. Encryption in public key cryptography provides data confidentiality and data

integrity. Data confidentiality means that the data encrypted can only be decrypted by the intended

recipient. Data integrity means that the data being sent has not been altered during the transmission.

To encrypt data with public key cryptography, a one-time symmetric key is generated. The

22

message is then encrypted with the symmetric key. The session key itself is then encrypted with

the recipient’s public key. The encrypted session key and the encrypted message are then sent as

one message to the recipient. Once received, the encrypted message and encrypted session key are

retrieved by the recipient. The symmetric key is then decrypted with the recipient’s private key.

Using the decrypted symmetric key, the recipient can then decrypt the message. As mentioned

above, only the recipient has knowledge of the private key, and thus no one else can decrypt the

message [14] [15]. Figure 2.3.2 below shows the encryption process while Figure 2.3.3 shows

decryption with public key cryptography [15].

Figure 2.3.2: Public Key Data Encryption; Understanding Public Key Cryptography. Available at

http://technet.microsoft.com/en-us/library/aa998077(v=exchg.65).aspx. Used under fair use, 2014 [15]

Figure 2.3.3: Public Key Data Decryption; Microsoft Exchange. Understanding Public Key Cryptography. Available at

http://technet.microsoft.com/en-us/library/aa998077(v=exchg.65).aspx. Used under fair use, 2014 [15]

Another service of public key cryptography is digital signatures. Digital signatures are a

cryptographic technique for authenticating the owner or creator of a document, or to signify ones

23

agreement with a documents content. Digital signatures provide authentication, data integrity, and

non-repudiation. Authentication is the confidence that the message came from the person who it

says it came from. Non-repudiation is the inability of the sender to later deny that the message was

sent by them.

To digitally sign a document or message, a hash value of the message is calculated. The

hash value is then encrypted with the sender’s private key. The encrypted hash value is appended

to the message as a digital signature and the message is sent. When the recipient receives the

message, the digital signature is retrieved and so is the message. The recipient calculates a hash of

the message. Then, the encrypted hash value is decrypted using the sender’s public key. The

recipient compares the decrypted hash with the hash value calculated by the recipient and if the

values match, the digital signature is valid. Since only the public key which correlates to the private

key of the digital signature can decrypt the message and since the sender is the only person with

access to his private key, it can be assumed that the sender indeed sent the message. Figure 2.3.4

shows the process of a user digitally signing a message and Figure 2.3.5 shows a recipient verifying

the digital signature [15].

Figure 2.3.4: Digitally Signing a Message; Microsoft Exchange. Understanding Public Key Cryptography. Available at

http://technet.microsoft.com/en-us/library/aa998077(v=exchg.65).aspx. Used under fair use, 2014 [15]

24

Figure 2.3.5: Verifying a Digital Signature; Microsoft Exchange. Understanding Public Key Cryptography. Available at

http://technet.microsoft.com/en-us/library/aa998077(v=exchg.65).aspx. Used under fair use, 2014 [15]

Both message encryption and digital signatures can also be used in conjunction with each

other to provide the most secure exchange of communication possible. A hash value of the message

is calculated and encrypted with the sender’s private key. The signed (encrypted) hash value is

then appended to the message as a digital signature. A one-time symmetric session key is generated

and used to encrypt the entire message. Next, the session key is encrypted with the recipient’s

public key and is appended to the encrypted message. The entire message is then sent to the

recipient. When the message is received, the encrypted message and the encrypted session key are

retrieved. The session key is decrypted with the recipient’s private key. The message is then

decrypted with the session key. A hash is taken of the newly decrypted message. The recipient

then decrypts the encrypted hash value using the sender’s public key. The decrypted hash value is

then compared to the calculated hash value of the recipient. If the values match than the signature

is valid and the message is returned to the recipient. Figure 2.3.6 show the process of combining

encryption and digital signatures with public key cryptography while Figure 2.3.7 shows the

decryption and verification process [15].

25

Figure 2.3.6: Digitally Signing and Encrypting a Message; Microsoft Exchange. Understanding Public Key Cryptography.

Available at http://technet.microsoft.com/en-us/library/aa998077(v=exchg.65).aspx. Used under fair use, 2014 [15]

Figure 2.3.7: Decryption and Verification Process with Public Key Cryptography; Microsoft Exchange. Understanding Public

Key Cryptography. Available at http://technet.microsoft.com/en-us/library/aa998077(v=exchg.65).aspx. Used under fair use,

2014 [15]

26

2.4 X.509 Certificates

X.509 specifies the standard format for public key certificates, certificate revocation lists,

attribute certificates, and a certification path validation algorithm. The X.509 certificate profile is

outlined in RFC 5280 [16]. As discussed above, the CA signs and issues a X.509 certificate that

binds a public key to the distinguished name characteristics in the X.509 certificate. The X.509

certificates are then published to a database where they can be reached by all users. There are

several required fields for a X.509 certificate. The version field identifies the version of the

certificate. If extensions are used, the version must be 3. Since DoD X.509 certificates all have

extensions, versions 3 is always used.

The serial number is a positive integer assigned by the CA. Each certificate has a unique

serial number. The signature field contains the algorithm identifier for the algorithm used by the

CA to sign the certificate. The issuer field identifies the entity that signed and issued the certificate.

The issuer field contains the contents of the distinguished name characteristics of the issuer. The

distinguished name characteristics can consist of country (C), organization (O), organizational unit

(OU), distinguished name qualifier, state or province, common name (CN), and serial number. The

validity field defines the period of time in which the certificate is valid. The validity field will have

a valid begin and a valid end date. The subject field contains the identity information about the

entity associated with the public key stored in the certificate. In addition to the distinguished name

characteristics as defined above, the subject field can also contain and email address for the subject.

The subject public key info field carries the public key and identifies which algorithm was used to

generate the key. In a version 3 certificate, the unique identifiers field is utilized to handle the

27

possibility of reuse of a subject and/or issuer names over time. Lastly, the extensions fields of a

version 3 X.509 certificate is a sequence of one or more certificate extensions [16]. Figure 2.4.1

below shows the contents of an X.509 certificate [29].

Figure 2.4.1: X.509 Certificate; Microsoft Tech Net. Digital Certificates. http://technet.microsoft.com/en-

us/library/cc962029.aspx. Used under fair use, 2014 [29]

The extensions added to X.509 certificates allows for the certificate to provide additional

attributes with users or public keys. Extensions on a certificate can be critical or non-critical. A

critical extensions cannot be ignored and if a system does not recognize the extensions then it must

reject the certificate. Non-critical extensions may be ignored if not recognized but must be

processed if recognized. The extensions can contain an object identifier (OID) or ASN.1 structure.

The authority key identifier extensions provides a means of identifying the public key

corresponding to the private key used to sign a certificate. The key usage extensions defines the

28

purpose of the key contained in the certificate. The key usage can be set to multiple values,

including non-repudiation, digital signature, certificate signing and more. The certificate policies

extensions contains OID’s that highlight the terms of the policy under which the certificate is used.

Applications with specific policy requirements will compare the OID’s in the certificate policies

with those that are accepted. If the extension is critical, the application must match the OID’s, if it

is non-critical then the application may ignore any unrecognized OID’s. The subject alternative

name allows additional identities to be bound to the subject of the certificate. The basic constraints

extension identifies whether or not the subject is a CA. The maximum depth of the basic constraints

extension provides the depth of the valid certification paths that include the CA certificate. The

extended key usage extensions indicates the purposes for which the certificate public key may be

used in addition to the key usage extension values. This extension is normally only seen in end

entity certificates. The CRL distribution point’s extension identifies how the CRL information is

obtained. The last extension seen in DoD CAC certificates is the authority information access

extension. This extension defines the use of the authority information access extensions in a CRL

[16]. There are many more extensions that can be added to X.509 certificates, but for the purposes

of DoD CAC X.509 certificates, these are the only extension fields that will be seen [16].

The certification path validation verifies a binding between the distinguished name

characteristics (and possibly the subject alternate name) with the subject’s public key. The basic

constraints and certificate policy extensions allow the validation process to be automated. At the

top of the validation path is the trust anchor. In a hierarchical PKI structure, the root CA is the trust

anchor. Since a hierarchical PKI structure has intermediate CA’s under the root CA, applications

may rely different trust paths that begin with any set of trust anchor. The X.509 certificate will

29

contains the certification path [16]. A certificate will be trusted by a computer if the CA’s in the

certification path are installed on the computer. Most computers come pre-loaded with several

well-known root CA’s. Other CA’s, such as the DoD CA’s, must be installed on a computer before

the certificates are trusted.

2.5 Prior Work

Since the term derived credential is such a new and unproven topic, there is not much prior

work that has been done in the field of derived credentials themselves. Currently, NIST, DISA,

and several contracted organizations are undergoing pilot projects that utilize the derived

credential. These projects focus more on the implementation of the derived credential and how it

will be used once it is loaded/stored on a mobile device. To be best of my knowledge, there has

not been any published documentation which specifically defines an architecture for creation and

delivery of a derived credential.

Currently, work-arounds to derived credentials can be achieved through use of a PIV card reader

integrated with a mobile device. While effective, this method would require that the mobile device

be able to attach to a contact PIV card reader via USB or Bluetooth. It would also require that the

user carry around a Bluetooth or wired card reader with them at all times. Modern PIV cards are

also RFID capable. Therefore, the RFID capable CAC could contactlessly communicate with the

Near Field Communication (NFC) on the mobile device. However, only select mobile devices are

NFC capable and NIST PIV specification prohibit cryptographic communication over NFC.

30

In September of 2012, Francisco Corella and Karen Lewison published a whitepaper titled

“Techniques for Implementing Derived Credentials” [11]. Their focus was techniques that can

facilitate the implementation, deployment, and use of derived credentials. The foundation of their

method is the ability to eliminate the need for X.509 certificate storage on the mobile device itself.

The device is given a key pair which is stored either in the web browser, front-end, or elsewhere

on the mobile device. The paper does not specify how the key pair would be generated or how it

would be delivered to the device. In a second method, the authors describe a two- and three-factor

authentication method. In this method, the authors show how instead of encrypting the private key

on the mobile device with a key-encryption key derived from the PIN, the authors use a method

where the complete key pair is regenerated from the PIN [11]. This method, they argue, has the

effect that all PIN values yield a well-formed key, pair, making it impossible to test PINs offline.

Not having an X.509 certificate on a mobile device leaves the mobile device without an actual

derived credential. In general, their method of regenerating a key pair from PIN and using that key

pair for authentication is no different than a username and password authentication method. While

the authors methods shown in this paper are very creative and innovative, the still leave the mobile

device without an actual X.509 certificate capable of digital signatures and authentication and thus

defeat the premise of having a derived credential on the mobile device.

2.5.1 Hardware vs. Software Cryptographic Module

While cryptographic modules can be implemented using both hardware and software, there

are security implication of both methods. While both modules can prove effective, it has been

shown that software-based cryptographic modules are less secure than hardware. In PKI, the

31

private key must be kept secure and private, therefore the storage of the key is critical to security.

A hardware cryptographic module that can carry out the cryptographic operation on a

microprocessor and store the private key are highly secure [32]. A hardware token may be

vulnerable to malicious software residing on the device the token is connected to. When the user

PIN is entered to unlock the token, malicious software on the device could have access to the

token. This access, however, is limited to the amount of time the token is unlocked or connected

to the device [32]. If a user’s hardware token is physically stolen, an adversary would have control

of the private keys stored on it, however, they would need the password or PIN to unlock the token

itself. A side channel attack can be carried out against a hardware token, if the adversary has access

to the physical token and is able to learn or crack the password to unlock it [32].

A smart card, which contains a hardware token, provides protection against the attacks

listed above. While there is still somewhat a threat from malicious software, the appropriate anti-

virus software can significantly reduce the threat of this attack. The modern smart card also allows

for the protection of side-channel attacks by limiting the number of guessed password attempts an

adversary can enter before the token locks up [32].

A software token, in relation to a hardware token, is significantly less secure. Since the key

is stored in software and retrieved for cryptographic operations, the keys must be stored in software

on all devices in which the user will work on. This increases the security vulnerabilities of software

keys. An obvious attack against a software token is physical access. Any device containing a key

in a software token can be physically accessed by an adversary. This physical access can occur

through theft of the actual machine, or by an adversary simply accessing a machine that is left on

32

[32]. Another threat to software tokens is malicious software. Viruses, worms, trojan horses and

more types of malicious software are very present in modern computing [32]. The countermeasure

against these threats is to use password encryption for the stored keys. However, if the encrypted

token is stolen somehow, an offline dictionary attack can be carried out by the adversary. For

protection against an offline dictionary attack, a long, randomly generated password would be

required. Since most users are not capable of remembering such passwords, most of the time

common words are used for passwords which make them less secure [32].

33

3 DoD PKI

This section describes the DoD PKI infrastructure implemented by the CAC and X.509 certificates.

3.1 Common Access Card

In response to HSPD-12 and the subsequent publications from NIST, the Department of

Defense instituted a department wide PKI architecture through the use of a CAC. Authentication

of an individual is fundamental component of physical and logical access control process to enable

physical access to buildings and controlled spaces, and it provides access to defense computer

networks and systems. The CAC is a credit card-sized smart card, and is the standard identification

for active duty uniformed service personnel, selected reserve, DoD civilian employees, and eligible

contractor personnel. The other primary purpose of the CAC is to control physical access to

buildings and controlled spaces, and to provide access to DoD computer networks and systems

[17]. For physical access, the CAC CHUID can be read via RFID/NFC in addition to visual

verification. The CAC provides two-factor authentication in that the user must for possess the card,

and then the user must know the PIN which is only known by the user. The front of CAC consists

of visual identification of a user through a facial picture, name, and rank, affiliation, service/agency

and expiration date along with a seal of the department. It has a bar code on both the front and

back of the card and a magnetic strip on the back which can be used to pull general identification

information off the card. Lastly, the CAC has an Integrated Circuit Chip (ICC). The following

figure shows a sample CAC [17]:

34

Figure 3.1.1: Sample Common Access Card; DoD Common Access Card. Available at http://cac.mil/. Used under fair use, 2014

[17]

The ICC is where the PKI X.509 certificates and keys are contained, as well as, the user

PIN and other PKI relevant information. The ICC can also perform cryptographic operations on

the chip itself. In accordance with FIPS 201, every CAC contains a user authentication certificate

and corresponding private key. Also, every CAC user who has network and email access has a

digital signature certificate and private key stored on the ICC. All DoD keys are 2048-bit RSA in

accordance with NIST Special Publication 800-78-3 [6]. All private keys are protected with a user

6-digit PIN. The CAC interacts with a electronic device via a CAC reader and software

middleware. Upon insertion of the CAC card, the user is prompted for the PIN. If the correct PIN

is entered, then the middleware interact with the ICC. For authentication, the digital certificates

can be accessed by the middleware. For digital signatures or encryption, since the private keys on

the ICC can never be exported, all cryptographic oporations utilizing the private keys must be done

on the CAC itself. The private keys on a CAC are also protected such that after 3 unseccessful PIN

attempts, the CAC will become locked and unusable.

35

3.2 DoD PKI Architecture

The DoD PKI architecture is organized as a hierarchical PKI. As discussed in Section 2.3,

a hierarchical PKI architecture means that there is a Root-CA with subordinate intermediate CAs.

The subsequent intermediate CAs then have authority to issue credentials to users. In the DoD

hierarchy, there is a DoD Root CA 2. Under the DoD Root CA are several intermediate CAs

currently numbered 11-30. There are intermediate CAs that issue Email (Digital Signature)

certifictes and just a DoD Intermediate CA that issues with authentication certificates. Under the

intermediate CAs are the subscribers certificates, stored on the CAC. Figure 3.2.1 shows a broad

overview of the DoD PKI hierachy of the Root CA 2 [18].

Figure 3.2.1: DoD Root CA 2 Hierarchy; Military CAC. Available at http://militarycac.com. Used under fair use, 2014 [18]

The DoD PKI participants are the DoD Policy Management Authority (PMA), the CAs,

the registration authorities, and the subscribers [19]. The DoD registration authorities are the

verifying officer/local registration authority (VO/LRA). The VO has several critical responsibilites

http://militarycac.com/

36

in the DoD PKI portion of the CAC distirbution process. The VO verifies the identity of a

subscriber and uses a RAPIDS workstation to issue the CAC to the card reciptient. The VO assists

in the management of the recipients keys and certificates as well as and updating that is required

to any information or keys on the ICC. The VO is responsible for executing revocation request

received from authorized sources [20].

3.3 DoD X.509 Certificates

The CAC stores three primary certificates for PKI funcationality for the subscriber;

authentication certificate, digital signature certificate and the key management certificate.

Appendix A contains the actual information of a CAC authentication, digital signature, and key

mangemante certficates. The certificates contains the following verison 3 fields; version, serial

number, signature algorithm, signature hash algorithm, issuer, valid from, valid to, subject, and

public key. For the issuer and subject fields, the following distinguished names acrynymes are

used: common name (CN), organizational unit (OU), organization (O), and country (C). The issuer

CN is either specific to the CA that issues the certificate.

The information referenced from the DoD X.509 certificate is from an actual user

certificate. Therefore, some of the information is unique to the specific user. For this users

authentication certificate, the CN is DoD CA-30. However, for the digital signature and key

management key, the CN is DoD Email CA-30. Since DoD has multiple intermediate CAs, the

intermedia CAs may have different numbers. The CN for the subject is the unique name of the

subscriber in accordance with COMMON. The organization is the U.S. Government. The country

is US. There are multiple organizational units for each certificate. The OU will contain the

37

department (DoD), the branch of service (Coast Guard for this user), and PKI. The certification

path of the authentication certificate is from the DoD Root CA 2, to a DoD intermediate CA (DoD

CA-30), to the subscriber as seen below. For the digital signature and key management keys, the

path still has DoD Root CA 2, but the intermediate CA is DoD Email CA-30. Figure 3.3.1 below

are snapshots taken from actual DoD Authentication certificates.

Figure 3.3.1: DoD CAC Authentication Certificate

There are several key extension added to the certificates including: authroity key identifier,

crl distribution points, certificate policies, subject key identifier, authroity information access,

subject alternative name, key usage, and extended key usage. As discribed in Section 3.2, the

authrity key identifier provides a means for relating the public key to the private key used to sign

the certificate. As seen in Appendix A, the authentication authority key identifier for this user is

keyid:08:4E:D5:A4:3C:2A:04:9B:93:1B:B7:04:08:8E:74:B9:06:7C:0D:A3, while the digital

signature and key management certificate authority key identifier is

keyid:35:61:66:28:09:BC:56:25:5B:8B:CC:BF:81:5E:61:2C:30:39:D3:21. These values are

unique to this specific user.

38

The CRL distirbution points provides the location of the crl file relating to this specific

certificate. For the authentication certificate, the CRL distirbution point for DoD EMAIL CA-30

is URI:http://crl.disa.mil/crl/DODCA_30.crl while the digital signature and key management key

CRL distribution points is URI:http://crl.disa.mil/crl/DODEMAILCA_30.crl. The authrotiy

information access extension has the CRL access information for each certificate. The certificate

polices are the same for all three certificates and are given in the form of OID’s. The first OID,

2.16.840.1.101.2.1.11.9, coorelates to DoD External Certificate Authority (ECA) Medium

Hardware Assurance (id-US-dod-mediumhardware) and validates that the certificates are

generated and stored on a FIPS 140 Level 2 hardware token (smartcard) only [19]. The second

certificate policy, 2.16.840.1.101.2.1.11.19, is Medium Hardware assurance certificates with

2048-bit RSA/DSA keys which are generated or stored in a FIPS 140 Level 2 hardware module

[19].

The subject alternative name for the authentication certificate only has the principal name

listed. The digital signature and key management keys also have the email of the user listed. In

these other certificates, it would look like this “RFC822 Name=First.M.Last@agency.mil”. The

key usage of all three certificates is marked as a critical extensions. For the authentication

certificate, the key usage is digital signautre. Section 3.2 shows how the digital signature can be

used to provide authenticaiton. The digital sigature certificate key usage propterties are digital

signature and non repudiation. Lastly, the only key management certificate key usage is key

encipherment. The extended key usage extension clearly lables the key usages for this certificate

and has a cooresponding OID. The the authentication certificate, the extneded key usages are smart

card longon (OID=1.3.6.1.4.1.311.20.2.2) and Client Authentication (OID=1.3.6.1.5.5.7.3.2). The

39

digital signature certificate has both extended key usages that the authentication certificate has,

and it also includes an extended key usage of Secure Email (OID=1.3.6.1.5.5.7.3.4). There are no

extended key usage properties for the key management certificate.

40

4 Derived Credentials

This section defines the 4 architectures for issuing derived credentials to mobile devices.

4.1 Overview

Derived Credentials for mobile devices have recently become hot topic. The derived

credential is a new credential that is derived from the credential on the PIV card or CAC. In the

most recent revision to FIPS 201, NIST included the approval for use of a Derived PIV Credential.

We will simply refer to a Derived PIV Credential as a derived credential moving forward. The

draft version of the special publication for derived credentials has been release, and should be

finalized in the near future. Once SP 800-157 is finalized, the Department of Defense will move

quickly to adapt the use of derived credentials across all agencies. In recent years, the significant

gains in mobile device capabilities allow for the access to information and applications wherever

and whenever needed. Mobile devices are one commonly carried device which an individual takes

with them everywhere they go, at all times of the day. The ability to securely access DoD email,

networks, and files from a mobile device would help increase performance and efficiency of the

entire department. Currently, the CAC provides a reliable, secure way to distribute PKI certificates

and keys to all eligible members of the Federal government and select contractors. Since the

integration of the CAC with mobile device would require bulky add-on devices, the most logical

answer to mobile device PKI is the derived credential. The derived credential, if utilized to its full

potential, could provide the same reliable and secure PKI for a mobile device that the DoD now

gets from the CAC. The premise behind the derived credential is that by providing proof of

41

possession of a valid PIV card, a user can receive a derived credential. While the PIV credential

itself is the same for a PIV card and a derived credential, the form factor is different. Currently,

there are technologies in place that could leverage derived credentials through software

cryptographic modules and hardware cryptographic modules. Instead of a user making an

appointment at a RAPIDS Identification Card Issuance Office, the user would be able to remotely

provision a derived credential (at a lower assurance level) by successfully authenticating through

their PIV card [30]. With the number of derived credentials that would need to be issued, the

deployment of derived credentials must provide a secure, yet efficient method of generation and

delivery. Requiring DoD employees to make appointments to visit the RAPIDS Identification Card

Issuance Office and have the registration authority officer issue a new credential for mobile devices

would essentially just be a new credential and would not be a derived credential as defined by SP

800-157. Through the process of evaluating the requirements and standards imposed by NIST, this

thesis develops 4 distinct architectures for remotely generating and delivering derived credentials

to DoD mobile devices that meet all NIST requirements.

4.2 Software Generated LOA-3 Derived Credential

The first two solutions proposed here for the generation and delivery of a derived credential

uses a software cryptographic module that generates the public/private key pair for the user using

FIPS 140 validated Level 1 software. Unlike the CAC, which utilizes a hardware token to generate

and store the PIV keys, a software token stores the keys in flash memory on the mobile device.

The keys are then protected (encrypted) with a PIN or password which adheres to the entropy

requirements of NIST SP 800-63-1 Table 6 Level 2 [8] for memorized secret tokens. The Level 2

42

token requirements state that the memorized secret may be a randomly generated PIN consisting

of 6 or more digits, a user generated string consisting of 8 or more characteristics chosen from an

alphabet of 90 or more characters, or a secret with equivalent entropy. According to SP 800-63-1

Table A.1, an 8 character password provides 18 bits of entropy [8]. SP 800-63-1 also states that

“the verifier shall implement a throttling mechanism that effectively limits the number of failed

authentication attempts an Attacker can make on the Subscriber's account to 100 or fewer in any

30-day period” [8]. When trusted applications are developed for DoD, they will attempt to access

the software token stored credential by prompting an input of the password or PIN by the user.

Once the key is unlocked, the application would have access to the key. A security measure of a

derived credential stored in software is that the token must lock after a certain number of improper

attempts at the PIN. This would stop an offline dictionary attack by the adversary by limiting the

number of attempted guessed PIN or passwords.

As was discussed in Section 2.5.2, a software generated and stored derived credential

would be less secure than a hardware token. The threats against physical access and offline attacks

make the software token a security liability [32][33]. Another problem with a software token is

that the software token itself does not know what application is accessing it. As long as the key is

entered, the application would have access to the key. Therefore, multiple pop-up authentication

methods may be required to ensure on proper key usage [34]. According to the SP 800-157 draft,

a software token derived credential would limit keys and certificates generated to LOA-3 [10].

However, despite only enabling LOA-3 credentials, the architecture provide a secure, efficient,

and remote method of generating a derived credential for a user. Since the software tokens are less

secure, the validity dates can also be adjusted for a shorter period of time. This would require the

43

user to more frequently authenticate for a new derived credential. If a new credential is issued, the

retired keys would need to be stored to access any files that were encrypted or signed by the

previous keys. However, since the keys are stored in memory, there is more space for retired

tokens.

4.2.1 CAC Signed Derived Credential

From Section 3.3, we know that the DoD PKI infrastructure is organized in a hierarchical

architecture. The highest level being the DoD Root CA with the next level is a DoD intermediate

CA. The lowest level, currently, is the actual user certificates. The premise behind this proposed

architecture is that the user themselves, would be able to generate and sign their derived credential

using their CAC as a CA to sign the CSR. Thus, this architecture would extend the DoD hierarchy

to include another level, the derived credential, below the user certificate. A DoD CAC holder,

who has already been issued Digital Signature and Key Management keys, has already been vetted

and approved for permission granted by the X.509 certificates on the CAC. The method would

allow the user to use a federally-approved application to generate a public/private key pair and

CSR, then use the CAC to sign the CSR and return a X.509 certificate which in turn has the CAC

user certificate in the CA chain. One of the biggest advantages to this method is the remote

generation and delivery of the derived credential to the user. The user themselves are now

authorizing the derived credential, based off the permissions approved on their CAC. If the CAC

certificates become invalid (revoked or expire) than the derived credential certificate itself would

expire.

44

One of the main disadvantages of this architecture is that current digital signature

certificates on the CAC do not have “certificate signing authority” privileges. Therefore, DoD

employees who are authorized the use of derived credentials would have to be reissued their digital

signature certificate on their CAC. By doing this, however, the DoD would be able to control who

is authorized the use of derived credentials. Any user trying to sign a CSR with a digital certificate

that does not have certificate signing authority, would be denied this privilege. The DoD

intermediate CA’s also have a path length constraint of 0, which means that they are the last CA

in the certification path. This number would have to be increased by one since the users CAC

certificate would not be acting as a CA under the intermediate CA’s. The application would be set

up such that after the CSR is approved, the extensions added to the new derived credential

certificate would be added.

Currently, there is not a certificate policy OID for derived credentials. The closest

applicable OID, 2.16.840.1.101.2.1.11.5, certificates issued to users in software format [31]. Since

the keys are being generated in a software cryptographic module, they would be delivered to the

mobile device through a PKCS#12 file. The software token generation of keys limits the derived

credential to only provide LOA-3. Once the derived credential certificate is signed, it would be

packaged in a PKCS#12 file with the corresponding private key. A PKCS#12 file is an encrypted,

password-protected file. A QR-Code will be generated with a link to the PKCS#12 file. The user

is able to scan the QR-Code with a mobile device application and download the PKCS#12 file to

the mobile device. As discussed above, the derived credential would then be stored on the mobile

device in a software cryptographic module and protected by encrypting it under a key derived from

a randomly generated 6-digit PIN or from a password with equivalent entropy, in accordance with

45

SP 800-157. Once stored, the derived credential is then ready for use by approved DoD mobile

applications.

The steps of signing a CSR with a CAC digital signature certificate is as follows:

1 The user would log into a DoD workstation. Using the CAC authentication certificate

(two factor authentication), the user would authenitcate with a certificate and PIN to

an approved computer software application that is FIPS 140 Level 1 approved for

generation of public/private key pairs.

2 If authentication is successful, the application will generate a 2048-bit RSA

public/private key pair for the user.

3 After the key pair is generated, a CSR is generated using critical information pulled

from the CAC digital signature certificate (name, email address, permissions) and the

public key.

4 The CSR is then sent to the CAC for an aproval signature. Since the private key never

leaves the CAC, the cryptographic operation of signing the CSR actually happens on

the ICC of the CAC.

5 After approved by the CAC, the derived credential extensions would be added to the

X.509 certificate.

6 The signed X.509 is published to the DoD PKI certificate repository.

7 The X.509 certificate and associated private key would be packaged into a password-

protected PKCS#12 file.

8 A QR-Code of the PKCS#12 file would be generated and displayed. The user would

scan the QR-Code with their mobile device to transfer the PKCS#12 file from the

computer to their mobile device.

9 The PKCS#12 file would then be extracted into a software cryptographic module on

the mobile device in accordance with SP 800-157.

46

4.2.2 Server-Driven Derived Credential

One of the easiest software driven architectures to implement the generation and delivery

of derived credentials is a server driven method. A web portal for derived credentials would need

to be built by the DoD for derived credential services. The DoD would need to create a new

intermediate CA. For the purposes of this architecture, we will call this new intermediate CA the

DoD DC CA. The DoD DC CA would then be the certificate authority on all CSR’s from the web

portal. The only requirement from DoD would be setting up the web portal with the proper

software cryptographic modules to generate the RSA 2048-bit keys and the certificates. Once

mobile devices are ready to receive derived credentials, the following steps could be taken for

generation and delivery. A CAC authentication would be required to access the web portal. As we

discussed earlier, the applicant must demonstrate possession and control of their PIV card via CAC

authentication. The web portal would then be responsible for generating the RSA 2048-bit

public/private key pair and CSR. The web portal would then use the DoD DC CA to sign the CSR,

and return the certificate and key to the user via a PKCS#12 file through QR-Code. The

transmission of the encrypted, password-protected, PKCS#12 file would be through a secure

connection with the mobile device. Similar to the CAC signed certificate, the server driven

certificate would then be stored into protected software token on the mobile device.

One advantage to having a web portal within the DoD intranet would be access control. A

CAC authentication certificate would be required for access and since it resides on the DoD

47

intranet, it would be provide easy oversight for the DoD. Since the CA resides on the DoD intranet,

it would be easy to institute and maintain the derived credential PKI. The web portal would also

provide a remote method for generating and delivering the derived credential. This will provide a

secure, efficient and instantaneous delivery of the credential and take the bourdon off of the

RAPIDS Identification Card Issuance Offices. A DoD user would not need to visit an ID center,

but could log into the web portal from any computer with a CAC reader and middleware.

The steps for a server driven derived credential are as follows:

1 The user would log into a DoD web portal designated for derived credentials using

the CAC authentication certificate and PIN (two factor authentication).

2 Using a software cryptographic module, the web portal would generate a 2048-bit

RSA public/private key pair.

3 Using critical information pulled from the CAC certificates (name, email,

permissions), the web portal generates a CSR for the user derived credential.

4 The CSR is then approved and signed by the DoD DC CA. The result is he users

derived credential X.509 digital certificate with the approved derived credential

extensions.

5 The signed X.509 is published to the DoD PKI certificate repository.

6 The X.509 certificate and the private key are packaged into an encrypted, password-

protected, PKCS#12 file. A link to the PKCS#12 file is on the web portal is turned

into a QR-Code for the user to scan.

7 The user scans the QR-Code and the PKCS#12 file is transferred, using a secure

connection with the server.

8 The PKCS#12 file would then be extracted into a software cryptographic module on

the mobile device in accordance with SP 800-157.

48

4.3 Hardware Generated Derived Credential

The other two architectures use similar certificate signing methods as the software

generated derived credentials, only the public/private keys are generated on a hardware

cryptographic module that is FIPS 140 validated Level 2. By generating the keys on a removable

(micro-SD) hardware token for the mobile device, the derived credential provides a LOA-4. The

private key on the hardware token is protected by a 6 digit PIN. The hardware token would provide

a means to protect the derived credential after a certain number of consecutive failed authentication

attempts. A hardware cryptographic module provides multiple advantages and disadvantages over

the software cryptographic module. From Section 2.5.2, we know that a hardware token is

intrinsically more secure than a software credential. One major advantage of the hardware

generated credential is that the private key is generated on the hardware module itself. Therefore,

only the person in possession of the cryptographic token and with knowledge of the PIN are able

to use the private key for any PKI function. Since the private key never leaves the hardware token,

all cryptographic operations using the private key are performed on the token and not in software.

In essence, a removable hardware cryptographic token would provide the same security features

as a CAC, just sized to integrate into a mobile device.

The main disadvantage of the hardware cryptographic token is that it would require the

purchase of a token for each mobile device approved for derived credentials. There would also be

an associated cost with reissuing defective, lost, or stolen mobile devices that contain a

cryptographic micro-SD card. Secondly, not all commercial mobile devices are equipped with

micro-SD slots such as the iPhone and certain Android based mobile devices.

49

4.3.1 Crypto Micro-SD

NIST approved cryptographic micro-SD cards are FIPS 140-Level 3 validated and can

provide a LOA-4 credential. For the purposes of derived credential implementation, a

cryptographic micro-SD is most well suited if it can generate the public/private key pair on the

cryptographic module. A cryptographic micro-SD card acts in a similar manner to the ICC on the

CAC. The processors on a cryptographic micro-SD card allow for the generation of a

public/private key pair with a restriction on the exportation of the private key. The private key can

be PIN protected in the same way that the CAC user PIN protects its private key. Since the CAC

is too large to be plugged into a mobile device, a FIPS 140 approved cryptographic micro-SD card

is an extremely viable option to implement secure derived credentials on mobile devices. As

derived credentials become more defined and more widely implemented by the DoD, commercial

companies will continue to develop more specialized and more customized NIST approved

cryptographic micro-SD cards and mobile devices. Below are two cryptographic micro-SD cards

that are currently possible solutions.

The Motorola CRYPTR MICRO is an encryption unit that would fit the necessary

requirements for DoD derived credential enabled mobile devices. The CRYPTR MICRO is FIPS

140 Level 3 complaint and provides high assurance key management and encryption capabilities.

Only approved software is able to execute on the CRYPTR micro unit, which validates the integrity

of the software upon each power up. The CRYPTR MICRO can support up to 512 keys and 32

certificates, well above the amount required for DoD PKI. The CRYPTR MICRO supports a full

NSA Suite B, including AES and Elliptic Curve Cipher Suites [21].

50

Figure 4.3.1: Motorola CRYPTR Micro SD Card; 21. Motorola CRYPTR MICRO. MicorSD Encryption Unit for Mobile Devices.

Product Spec Sheet. Available at http://www.motorolasolutions.com/web/Business/Products/Two-Way%20Radios%20-

%20Public%20Safety/Encryption/AME1000/CRYPTR_micro_Encryption_Unit/CRYPTR_micro_spec_sheet.pdf. Used under fair
use, 2014. [21]

Another cryptographic micro-SD card that is FIPS Level 3 approved is the ScanDisk

TrustedFlash v1.0 [22]. The TrustedFlash v1.0 is outfitted with an onboard processor and a high

performance cryptographic engine. The TrustedFlash supports the generation of RSA keys and

implements AES, Triple-DES, PKCS, and SHA cryptographic algorithms [22].

4.3.2 CAC-Signed Hardware Derived Credential

By utilizing a removable cryptographic micro-SD card with the mobile devices, the DoD

can implement LOA-4 derived credentials. This architecture would on be available with mobile

devices that contain a micro-SD expansion slot. Tablet devices could also utilizes a cryptographic

SD card of a different size that fits their expansion slots. This architecture combines the same

principles from the CAC signed derived credential with a software cryptographic module, except

51

utilizes the hardware token for key generation. Again, this method would require that new CAC

digital signature certificates be issued with certificate signing authority. An approved software

application that integrates with the hardware token would be required for this method. The

hardware token would also need to be connected to the computer with the software application

interface, thus allowing the software to interact with the card. The software application would first

need to authenticate the CAC holder prior moving forward in generating the derived credentials.

The software application would then interface with the cryptographic micro-SD card to generate

the public/private key pair. As stated above, the hardware token would provide two factor

authentication in that the user would have to have possession of the token, and the user would need

to know the PIN to use the private key. Once the key pair is generated on the token, the same steps

are followed to sign the CSR with the CAC as before. Since the private key is already stored on

the hardware token, there is no need to transfer any kind of PKCS#12 file back to the mobile

device. The signed X.509 digital certificate are meant to be public, thus it can be published to the

DoD certificate directory and then downloaded to the cryptographic hardware token on the mobile

device from the computer or DoD PKI repository.

1 The user would log into a DoD workstation. Using the CAC authentication certificate

(two factor authentication), the user would authenticate with a certificate and PIN to

an approved computer software application that interfaces with the cryptographic

micro-SD card.

2 If authentication is successful, the application will generate a 2048-bit RSA

public/private key pair on the cryptographic micro-SD card.

3 After the key pair is generated, a CSR is generated using critical information pulled

from the CAC digital signature certificate (name, email address, permissions) and the

public key.

52

4 The CSR is then sent to the CAC for approval and signature. Since the private key

never leaves the CAC, the cryptographic operation of signing the CSR actually

happens on the ICC of the CAC.

5 After approved by the CAC, the derived credential extensions would be added to the

X.509 certificate.

6 The signed X.509 is published to the DoD PKI certificate repository.

7 The X.509 certificate is than imported back to the mobile device cryptographic micro-

SD card for storage.

4.3.3 User-Driven Hardware Derived Credential

The user driven hardware derived credential is generated in the same manner as the CAC

signed hardware derived credential, except this credential is signed by a DoD DC CA and not

signed by the CAC digital signature certificate. This method would alleviate the burden of

reissuing CAC digital signature certificates to include the certificate signing authority. It would

again keep the certificate signing and approval on the DoD servers just as with the server driven

software derived credential. The user would be required to authenticate to a web portal via the

CAC authentication certificate. Once the user has access to the portal, the user would upload the

CSR via the software application on the computer. The web portal would then approve and sign

CSR submitted by users granted access. The DoD DC CA would then sign the CSR and publish it

in the DoD certificate repository. As in the previous architecture, the signed X.509 digital

certificate is meant to be public, and therefore can easily be downloaded back to the mobile device

for storage on the cryptographic micro-SD card from the DoD PKI repository.

53

1. Using the CAC authentication certificate (two factor authentication), the user would

authenticate with a certificate and PIN to an approved computer software application

that interfaces with the cryptographic micro-SD card.

2. If authentication is successful, the application will generate a 2048-bit RSA

public/private key pair on the cryptographic micro-SD card.

3. After the key pair is generated, a CSR is generated using critical information pulled

from the CAC digital signature certificate (name, email address, permissions) and the

public key.

4. User must authenticate to DoD web portal using CAC authentication certificate. Once

authenticated, the user then would have the permission to upload CSR for approval.

5. The CSR is then sent to the DoD DC CA for approval and signature through the DoD

web portal. After approved by the CA, the derived credential extensions would be

added to the X.509 certificate.

6. The signed X.509 is published to the DoD PKI certificate repository.

7. The X.509 certificate is than imported back to the mobile device cryptographic micro-

SD card for storage.

54

5 Prototype Implementation

Chapter 4 detailed four distinct architectures for generating and deploying derived

credentials to mobile devices. This chapter details the prototype implementation of the

architectures. The testing setups and tools used are detailed below. Finally, the implementation

was completed and the results are described in detail and shown in full as appendices.

5.1 Test Environment

A virtual box installation of Ubuntu 13.10 was used as the primary computer responsible

for the implementation. A generic contact USB Smart Card reader was used to interact with both

a CAC and purchased Gemalto PIV II smart cards. OpenSSL, a software toolkit, was used to

generate 2048-bit RSA keys, CSR’s, X.509 Certificates. OpenSSL is detailed below. To interact

with the CAC and Gemalto smart cards, the OpenSC toolkit and subsequent libraries (piv-tool,

pkcs11-tool, pkcs15-tool, and pkcs15-crypt) were used. After a mock DoD CA hierarchy was

created using OpenSSL, OpenSSL and OpenSC were used to set up two mock CAC’s using the

Gemalto smart cards. Using OpenSC, the key pairs were generated on the Gemalto smart card.

Next, OpenSSL was used to generating the CSR. Depending on the architecture, OpenSSL or

OpenSC was used to implement the certificate signing with the CA. The architecture segments

were converted to a python script which, when executed, fully implements the architecture. Figure

5.1.1 shows the setup used for implementation testing. The CAC and the 2 Gemalto smart cards

can be seen on the left portion of the photo along with the USB smart card reader.

55

Figure 5.1.1: Test Setup

5.1.1 OpenSSL

OpenSSL is an open-source, commercial-grade, toolkit that is used to implement Secure

Socket Layer (SSL) and Transport Layer Security (TLS) protocols [24]. OpenSSL is managed by

a worldwide group of volunteers. OpenSSL has been validated as a Level 1, FIPS 140 software

cryptographic module. This is important for the implementation of the software architectures, as

NIST 800-157 requires the Level 1 validation of the software cryptographic module to generate

LOA-3 credentials. Information, documents, and command definitions for OpenSSL can be found

at www.openssl.org [24].

http://www.openssl.org/

56

5.1.2 OpenSC

OpenSC is another open source, commercial-grade set of libraries and tools that work

directly with smart cards. Just like OpenSSL, OpenSC is written by a host of volunteers online.

OpenSC implements the PKCS#11 API and attempts to be compatible with every smart card that

utilizes the PKCS#15 standard [25]. Essential to being able to sign a CSR with a CAC was the

engine_pkcs11 library, as well as the libp11 library. OpenSC, along with the other required

libraries, are available on the toolkits GitHub web site at www.github.com/OpenSC/OpenSC/wiki

[25].

5.2 Mock DoD Certificate Authority Setup

This section details the process of setting up the simulated DoD CA used for the

implementation.

5.2.1 OpenSSL Configuration File

In order to accurately prototype the derived credential architectures, it was first required to

have a CA hierarchy that was mimicked from the actual DoD PKI hierarchy. The first step in this

process was to set up the OpenSSL configuration file. The full configuration file can be found as

Appendix A. The configuration file directs OpenSSL on the creation of CSR’s and certificates.

Since our hierarchy is multi-level, there are multiple CA’s identified in the configuration file, each

with identifying names. Each CA labeled has the specific path to the directories and files that are

required for that CA. It provides the distinguished names for the CSR’s. The CA section also

http://www.github.com/OpenSC/OpenSC/wiki

57

defines which set of extensions are to be assigned when issuing the digital certificate. The other

key element of the CA section is the length of time (in days) that the certificate is valid for. The

policy of each CA points to a different section of the configuration file that identifies the policy

matches required for approving a CSR. Lastly, the unique subject line is set to yes if multiple

certificates with the same common name are permissible by the CA.

The policy sections of the configuration file identify which distinguished name

characteristics are required for the CA to approve a CSR. If a distinguished name is set to match,

that specific distinguished name must match the CA. If it is set to supplied, then the CA must use

the distinguished name from the CSR. If it is set to optional, the CSR does not need to match the

CA.

The req section of the configuration file sets the default settings for a CSR. In the

configuration file used for the mock DoD setup, the distinguished names are coded into the

configuration file [24].

Lastly, each extensions section of the configuration file sets the extensions that are to be

added to a certificate signed by the CA section that specifies that section. The extensions of a

X.509 certificate are identified in 3.2. The extension sections were created with as many similar

extensions as possible to the actual DoD CA and user certificates.

5.2.2 DoD Mock Certificates

Once the configuration file setup was complete, the mock DoD CA certificate could be

created. All of the commands and outputs from the entire mock set up are included as Appendix

58

B. The first step in this process was to create all the directories within the SSL folder on the Ubuntu

machine. Within each directory, an index file and serial file were created. The index maintains a

database of the signed CSR’s for each CA and serial file provides the serial for the next generated

certificate.

The mock DoD Root CA was the first CA that needed to be created. Since this is a mock

setup, the Root CA is a self-signed certificate. The first step is to generate the key pair and generate

a CSR using OpenSSL. This req command creates a new CSR [24]. A RSA key size of 2048 bits

is specified as well as SHA-1 encryption standard. When creating the CSR, the command prompts

the user for input of the distinguished names. Since the country, organization, and organizational

unit are the same for all the CAs, they were hard coded into the configuration file. The common

name is different and is input in the command prompt. To self-sign the DoD Root CA CSR, the

x509 command is used [24]. OpenSSL will prompt the user for the private key password, and

after passing verification, the certificate is signed.

For creating the intermediate CAs, the same step is followed to create the CSR. However,

since in the hierarchy scheme used by DoD the intermediate CAs fall below the Root CA, the Root

CA is used to sign and approve the intermediate CA CSRs. Therefore, once the CSRs are created,

the OpenSSL command ca is used to specify an action being performed by a CA [24]. After the

ca command is issued, the name of the ca section from the configuration file is identified. Once

executed, OpenSSL prompts the user for the CA private key password. When approved, the CSR

is signed by the CA, and the extensions specified in the configuration file are added to the

59

certificate. In Appendix B the creation of the DoD CA I Sim certificate and the DoD DC CA Sim

certificate can be seen in detail.

5.2.3 Gemalto PIV II Smart Cards Initialization

Once the DoD CA and intermediate CA certificates are completed, the next step was to

create the mock CAC cards. Two Gemalto PIV II smart cards were purchased, which closely

mirror the specifications and capabilities of the CAC [23]. Gemalto is one company that provides

the DoD with CAC smart cards [23].

To interact with a smart card, the OpenSC toolkit is utilized [25], specifically the piv-tool [26].

The piv-tool is used for card administration operations. A file containing the Gemalto card

authentication password is saved and the path is exported. To generate the key pair on the card,

the following command was given [26]:

$ piv-tool -A M:9B:03 -G 9C:07 -o \

 /home/al/pki_project/gemalto_card/pubkey.02.user1

In accordance with NIST SP 800-78, an RSA key of 2048 bits is generated using –G and the

algorithm identifier from Table 7 above; 07 [6]. Table 6 above shows the key reference values for

the specific key on the card; 9A for the authentication certificate and 9C for the digital signature

certificate [9]. The -A identifies the administrative password location on the card. The -o outputs

the slot key for the specific reference value on the card [26].

The ability for OpenSSL to interact with a hardware driver comes from the implementation of

the engine_pkcs11 interface [28]. To set the engine, the path to the engine .so file is given. The

60

several engine pre commands at given. Then the path to the module is set. After running the

following command, the engine is initialized and ready for use [28].

OpenSSL>

engine dynamic \

-pre SO_PATH:/usr/lib/ssl/engines/engine_pkcs11.so \

-pre ID:pkcs11 -pre NO_VCHECK:1 -pre LIST_ADD:1 -pre LOAD \

-pre MODULE_PATH:/usr/lib/x86_64-linux-gnu/opensc-pkcs11.so

Once the engine is initialed, then OpenSSL can be used to generate a CSR using the public

key from the smart card. The same type command is given for the generation of the CSR as in the

previous sections, except this time the engine is set, and the key is inserted from the slot_1 (the

slot of the Smart Card reader) and id_01 (for the authentication key, ID of 02 would identify the

digital signature key). The –out command give the filename of the CSR and location. The card

authentication PIN is required to access the key and generate a CSR [24].

req -new -config /home/al/pki_project/ssl/openssltest.cnf \

-engine pkcs11 -sha1 -key slot_1-id_01 -keyform engine \

-out /home/al/pki_project/ssl/usercert.csr –text

Once the CSR is created, it is signed by the CA using the OpenSSL ca command [24]. The

user certificates fall under the intermediate CA in the hierarchy, and therefore are signed by our

mock DoD CA I certificate. Once the CSR is signed by the CA, it is stored onto the smart card.

The piv-tool is used to accomplish this. The –A sets the authentication of the administrator. The

–C writes a certificate to the card. Finally, the –i specifies the location of the certificate to be

input [26].

$ piv-tool -A M:9B:03 -C 9A -i \

/home/al/pki_project/ssl/DoDRootCA/DoDCAI/UserCerts/ \

61

certs/user2.crt

Appendix C.1 then shows the steps used to verify that the certificate was indeed installed to the

correct slot on the card and that the certificate is valid. Additionally, the same processes was used

to setup and install a digital signature certificate for user 1 and an authentication and digital

signature certificate for the user 2 smart card. The only difference in the process is that the id for

the digital signature certificate is 9C, not 9A [9].

5.3 Implementation

This section provides the results from the prototype implementation of the architectures for issuing

derived credentials.

5.3.1 CAC Signed Derived Credential

The python script, Appendix D.1, demonstrates a prototype implementation of the CAC

signed derived credential. The first step in the architecture is to authentication the users PIV card.

For the purposes of this implementation, the Gemalto PIV card with the mock DoD certificates

was used. Upon running the script, the first thing that is done is the user authentication process.

The certificate from the PIV card is pulled and checked against the CA certificates for authenticity.

This is performed using the OpenSSL -verify command, and providing a concatenated file with

all the allowable CA’s. If the certificate validation passes, the second step is the actual

authentication process. A hashed file is signed by the user private key and sent to the application

for verification. The application then takes the signed hash, decrypts it using the public key

provided by the PIV card and compares the decrypted hash with the hash of the original message.

62

This process is performed using the OpenSSL -dgst command with -verify selected. If either

of these two authentications fail, then the program will no longer continue to run.

The second portion of the program parses through the PIV digital signature certificate and

find the essential data to provide for the derived credential. Our program specifically pulls the

common name and email address from the certificate. However, it can be adjusted to take any

other subject characteristics or extensions that are required by NIST for the derived credential

certificate. After we have collected the information from the PIV card certificate, we create a

temporary OpenSSL configuration file. The temporary configuration file allows us to input the

information taken from the PIV card certificate, and add that information to the CSR and signed

certificate once created.

Once the temporary configuration file is created, the next step is to create the actual derived

credential. The 2048-bit key pair is generated using OpenSSL genrsa command. Following the

key pair generation, the CSR is generated using the information in the temporary configuration

file and the public key just generated.

The next step is to approve and sign the CSR with the digital signature certificate that is on

the PIV card. The key to being able to sign a CSR with the PIV card, is the engine_pkcs11

interface. The engine has to first be initialized, using the following OpenSSL command:

engine dynamic -pre \

SO_PATH:/usr/lib/engines/engine_pkcs11.so -pre ID:pkcs11 \

-pre NO_VCHECK:1 -pre LIST_ADD:1 -pre LOAD \

-pre MODULE_PATH:/usr/lib/x86_64-linux-gnu/opensc-pkcs11.so

63

Once the engine is initialized, the OpenSSL ca command is executed to perform the

certificate signature. The OpenSSL command utilizes the engine interface to interact with the PIV

card and use the private key stored on the card for signature. The engine interface instructs

OpenSSL that the keyform for signature is the engine and it is in slot_1 and id_02 (slot 1 is

the card reader and id 02 is the digital signature key). While the program performs this OpenSSL

command, the user will be prompted to input the PIN protecting the private key of the digital

signature. In our implementation, the PIN is “1234”.

Once the certificate is created, it is ready to be transferred to the mobile device. The

program then packages the signed certificate with the associated private key in an encrypted,

password-protected, PKCS#12 file. When this action is completed, the user is prompted to input

the password that protects the PKCS#12 file. The PKCS#12 file is then published on an Apache2

server that is running on the terminal. The program generates a QR-Code for the PCKS#12 file

and when the user scans the QR-Code, it will begin the transfer of the derived credential PKCS#12

file to the mobile device for extraction and use. Figure 5.3.1 shows the QR-Code generated white

contains the path to the PKCS#12 file containing the smart card signed derived credential and

private key on the Apache server.

64

Figure 5.3.1: QR-Code for a PKCS#12 File on Apache Server

When we inspect the derived credential certificate that we have created, seen below as

Figure 5.3.2, indeed the certificate is issued to User.2.Dig.Sig and was issued by User 2 Dig Sig;

User 2 Dig Sig is he certificate stored on the Gemalto smart card. The certificate path of the

certificate shows that its starts at the DoD Root CA Sim, then the DoD CA I Sim, then the User 2

Dig Sig (the certificate stored on the PIV card), and then finally the derived credential certificate

itself. In our prototype, we limit the validity of the certificate signed by a PIV card to one week (7

days). As discussed in Section 4.2, this is a built in security factor for a derived credential stored

in a software token. While one week was the length that we selected, the validity period is hard

coded in the program and can be adjusted for whatever requirements are approved by NIST. If the

phone is lost or stolen, the 7 day valid certificate will expire and be inherently useless.

65

Figure 5.3.2: Certificate Signed by Smart Card

The full details of the derived credential certificate can be found as Appendix D.3. Further

inspection reveals that the certificate has the same distinguished name characteristics as the

original PIV card certificate, including the common name and email addresses. Since the derived

credential certificate is only for use on mobile device for authentication and digital signatures, the

only key usage permissions that are added are digital signature and non-repudiation. The only other

extensions that are added are basic constraints, subject key identifier, and authority key identifier.

When DoD policy is created for derived credentials, a certificate policy OID may be appropriately

added to the certificate.

5.3.2 Server-Driven Derived Credential

The server driven derived credential architecture is very similar to the CAC signed derived

credential. The primary difference between the two architectures is the CA. For the CAC signed

66

derived credential, the CA was the users digital signature certificate on the CAC. However, with

the server driven architecture, the CA is a new intermediate CA created by DoD; DoD DC CA Sim

in our prototype.

The complete python code that implements the server driven derived credential can be

found as Appendix E.1. The full output results of the python code can be found as Appendix E.2.

The user now authenticates to a web portal instead of a software application residing on the

terminal itself. Our prototype models the authentication process by first, checking for validity of

the users PIV certificate. If the certificate presented by the user is valid, the next step in the

authentication process is to verify the certificate. The PIV card private key is used to encrypt a

hashed message. The public key retrieved from the PIV certificate is used to decrypt the encrypted

hash. The original hash and the decrypted hash value are compared, and the certificate is valid if

the two hash values match.

In the server driven architecture, once the user is authenticated to the web portal, the rest

of the process is driven on the server side. The server generates the new 2048-bit key pair for the

derived credential. . In the prototype, the program only extracts the common name and the email.

As NIST finalizes the requirements for the derived PIV credential, select extensions can also be

chosen from the original PIV certificate for the derived credential. One the information is extracted

from the PIV certificate, a temporary OpenSSL configuration file is created with the proper

distinguished names inserted. Then the server creates the CSR for the user with the new public key

and the temporary configuration file. The resulting CSR is then approved and signed by the CA,

DoD DC CA Sim. Once signed, the certificate is then packaged with the private key in a password-

67

protected PCKS#12 file. The user is prompted for the PCKS#12 password for input. Once the

PKCS#12 file is complete, it is placed in the proper file on the Apache server running on the

terminal. A corresponding QR-Code is generated with the URL to the file. The user can then scan

the QR-code and the PKCS#12 file is transferred to the mobile device.

Inspection of the server driven derived credential, seen below as Figure 5.3.3, reveals the

certification path. The root CA is still the DoD Root CA. The root CA is followed by the

intermediate CA, DoD DC CA I.

Figure 5.3.3: Derived Credential Signed By DoD DC CA

The full details of the server driven derived credential certificate can be found as Appendix

E.3. Further inspection again shows that the certificate has the same distinguished name

68

characteristics as the original PIV card certificate, including the common name and email

addresses. Also, since the derived credential certificate is only for use on mobile device for

authentication and digital signatures, the only key usage permissions that are added are digital

signature and non-repudiation. The only other extensions that are added are basic constraints,

subject key identifier, and authority key identifier.

5.3.3 Hardware Token Credentials

Although we did not implement the hardware token credentials, both server driven and

CAC signed, the same steps that are outlined in sections 4.3.2 and 4.3.3 were taken when

completing the setup of the Gemalto Smart Cards. The main difference being that the derived

credentials would be generated on a micro-SD card rather than a smart card. NIST 800-157

requires that the derived credential is only issued once the requester has been authenticated via

PIV card. Therefore, the PIV must either interact directly with the mobile device via USB contact

reader or Bluetooth reader, or the mobile device and the PIV must be connected to the same

terminal. Connecting the mobile device to the terminal via a micro-USB cable is the most practical

solution. Each terminal would have an application that would interact with the cryptographic

micro-SD card on the mobile device as well as the PIV card. The first process of the application

would be to authenticate the user via the PIV card. Once the authentication process is complete,

then process of creating the derived credential would begin.

The first step of creating the derived credential is generating the keys on the cryptographic

micro-SD card. To generate keys on a USB connected hardware token, the OpenSC piv-tool

is utilized [26].

69

$ piv-tool -A <{M|A}> -G <ref>:<alg> -o <file>

The A identifies the admin authentication and is specific to the cryptographic token. For the

Gemalto cards, M:9B:03 was used. The G function generates the key pair. Ref refers to the key

reference values identified in NIST SP 800-78 and seen in table 6 above. Alg is the algorithm

identifier that is defined in NIST SP 800-78 and seen in table 7 above. For a RSA 2048-bit key,

the algorithm identifier is 07 [9].

Once the keys are created, the CSR must be completed. First, the engine_pkcs11 must

be initialized to specify that the keys to be used for the CSR are on a hardware token [28].

openssl>

engine dynamic -pre

SO_PATH:/usr/lib/engines/engine_pkcs11.so -pre ID:pkcs11 \

-pre NO_VCHECK:1 -pre LIST_ADD:1 -pre LOAD \

-pre MODULE_PATH:/usr/lib/x86_64-linux-gnu/opensc-pkcs11.so

After the engine is initialized, the OpenSSL req command is used to generate a CSR.

req -new –config ./openssl.cnf -engine pkcs11 -sha1 \

-key slot_1-id_02 -keyform engine -out file

Config identifies the path to the OpenSSL configuration file to be used. Engine tells OpenSSL

to use the pkcs11 engine. Sha1 identifies the encryption algorithm. The key to be used is identified

by the slot and id listed [24]. The slot should be whatever slot the mobile device cryptographic

micro-SD can be found. The id is the specific certificate that is to be used. The authentication

certificate is 01, the digital signature certificate is 02, and the key management certificate is 03

70

[26]. If it is unknown, the slot the hardware token is stored in can be found using the pkcs11-

tool to list the slots. To list the slots, the following command is used [26]:

$ pkcs11-tool --list-slots

Once the CSR is generated, it must be signed by the CA. The CAC Signed Derived

credential architecture would send the CSR to the CAC for signature. The process for signing a

CSR with a CAC requires that the engine be initialized again since the CAC digital signature

certificate is on a hardware token. Once the engine is initialized, the follow OpenSSL ca command

will sign a CSR with a digital certificate on the PIV card:

$openssl ca -engine pkcs11 -config ./openssl.cnf \

-cert file -keyform engine -keyfile slot_1-id_02 \

-name CA_usercerts -in CSRfile -out dcfile

Again, engine specifies the pkcs11 engine. The config identifies the path to the

configuration file. Keyform tells OpenSSL that the CA private key can be found in the engine.

The keyfile again is identified by the slot and the id of the CA private key to be used. Name

identifies the configuration file section to use. The in file is the path to the CSR and the out is

the path of the newly signed derived credential certificate [24].

For the server driven derived credential, the process to sign the CSR would include the

OpenSSL ca command, however, it is not necessary to initialize the engine since the CA private

key is kept on the same web portal that the user has accessed. Once the user authenticates to the

web portal, and the CSR is generated by the web portal, the CSR is signed by the intermediate

71

derived credential CA: DoD DC CA. The OpenSSL command to sign the server driven derived

credential would be [24]:

$ openssl ca -config ./openssl.cnf -cert file \

-name CA_usercerts -in CSRfile -out dcfile

It is not necessary to identify the location of the CA private key in this instance since its

location is static and consistent. The location would be hard coded in the configuration file [24].

Once the certificate is signed, it can be downloaded to the mobile device in a few different ways.

Since it is a public certificate, it can be published by DoD to their certificate repositories and then

downloaded to the mobile device via a mobile application. Alternatively, the certificate can be

returned to the terminal the user is accessing to generate the derived credential and imported

directly to the mobile device. The command to store a certificate to a cryptographic hardware token

is:

piv-tool -A <{M|A}> -C <ref> -i DCfile

The admin authentication is the same as above. C is used to specify the action of writing a

certificate to the card. The ref is the same key reference where the RSA keys were generated

since the derived credential correlates to that key pair. I specifies the file name for input operation

[26].

72

6 Conclusion

This section provides a conclusion for the thesis and touches on the future work in the area of

derived credentials for DoD mobile devices.

6.1 Summary

The deployment of derived credentials to DoD mobile devices can greatly affect the

efficiency and security of the entire department. Modern smartphones are nearly as powerful and

functional as desktop PC’s yet portable enough they are integrated into almost every moment of

our everyday lives. Enabling a mobile device the same PKI access as the DoD CAC would allow

secure mobile authentication to DoD web portals and the use of secure email at all times of the

day. While the concept of derived credentials is being molded, the generation and delivery

architectures are still unknown. The goal of this thesis was to explore possible solutions for a DoD

derived credential architecture for efficiently and securely generating approved derived credentials

and delivering them to the users mobile device.

NIST standards allow for both a software and hardware cryptographic module generation

of public/private key pairs. Two of the architectures detailed utilize a software cryptographic

module that generates the public/private keys through the use of OpenSSL. One architecture allows

the user to act as the CA and sign the CSR with the CAC card while the implements a server driven

CA and the CSR is signed by a DoD derived credential CA residing on a DoD server. Since a

software cryptographic module is less secure than a hardware cryptographic module, these derived

credentials would only provide the user with a LOA-3 credential. However, by limiting the validity

73

period of the credentials, and storing them in an encrypted software token can greatly increase the

security of the credentials and protect them against vulnerabilities.

The last two architectures utilized a non-embedded hardware cryptographic module

(micro-SD card) to generate the public/private key pair. In the same way, one architecture allows

the user to act as the CA and sign the CSR with the CAC card while the implements a server driven

CA and the CSR is signed by a DoD derived credential CA. Due to the highly secure nature, a

hardware generated derived credential provides the user with a LOA-4 credential. By protecting

the credentials with a PIN and storing them on a hardware cryptographic module, the DoD can

securely deploy derived credentials to all mobile devices.

The prototype implementation showed the possibility of allowing the user to sign a CSR

with a CAC. While NIST SP 800-157 authorizes both generation of the RSA key pair through

software and hardware cryptographic modules, I believe that the hardware cryptographic module

will be the preferred method of implementation by DoD. The cryptographic micro-SD card, in

theory, acts exactly as the CAC in that the key generation and all subsequent PKI operations are

performed on the cryptographic module itself. The key never leaves the hardware token and is

tamper proof. The loss of a mobile device containing a hardware token does not threaten the

security of the DoD PKI structure. Whichever method DoD policy decides to authorize for the

generation and delivery of derived credentials, one of, or a combination of, the architectures in this

thesis will satisfy their requirements.

74

6.2 Recommendations for Future Work

Since term derived credential is so new and the standards and requirements are still

undefined, this thesis has only begun to explore the possible solutions for an architecture for

deployment. In the same regards, the architecture for deployment of the derived credential is only

one aspect of the full implementation requirements for derived credentials. The first thing that will

need to happen is NIST to publish the approved copy of SP 800-157. There are also updates to the

COMMON and NIST SP 800-78 and 800-73 that will need to include the derived credential

specifications. Certificate policy OID’s will need to be created specifically for derived credentials.

Once NIST finalizes all the documentation for derived credentials, the DoD is going to need to

establish their own policy for derived credentials. Once DoD finalizes their policy on derived

credentials, it will provide better insight into which architecture provided would work best for

DoD. The architectures can be adjusted or combine to meet the policies set forth by the DoD.

While not specifically detailed in this paper, embedded hardware security modules are becoming

more and more common in mobile devices. After NIST approves derived credentials for use on

Federal mobile devices, industry may begin developing more phones with embedded hardware

tokens. An advantage to embedded hardware tokens is that it would not be necessary to purchase

additional hardware tokens after the initial purchase of the phone. The embedded hardware token

would come standard in the phone and could provide unique security features not supported by

other approaches [30].

The next step, once the derived credentials are created and deployed to mobile devices, is

the generation of DoD approved mobile applications that interact with the derived credential. The

75

first mobile application on the phone would need to be written to correctly parse and store the

PKCS#12 once the QR-Code is available to be scanned. The other mobile applications that must

be developed would use the derived credential for secure email or DoD server access. The DoD

could also implement secure voice or secure messaging since the public/private keys and

certificates on the mobile device can be used for encryption. Once the derived credentials are

approved and securely stored on the mobile device for use, the DoD will be able to approve mobile

applications with a wide array of functionalities. It will be up to them to decide how the derived

credentials can and cannot be used.

76

References

1. George W. Bush. Homeland Security Presidential Directive 12: Policy for a Common

Identification Standard for Federal Employees and Contractors, August 2004. Available

at http://www.dhs.gov/xabout/laws/gc_1217616624097.shtm.

2. U.S. Department of Defense. Web. April 14, 2014. Available at

http://www.defense.gov/about/.

3. NIST Computer Security Division: Computer Security Resource Center. About Personal

Identity Verification (PIV) of Federal Employees and Contractors.

Available at http://csrc.nist.gov/groups/SNS/piv/

4. FIPS Publication 201-2, Personal Identity Verification (PIV) of Federal Employees and

Contractors, NIST, August 2013, or as amended. Available at

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.201-2.pdf.

5. NIST Special Publication 800-73-3, Interfaces for Personal Identity Verification, NIST,

Feb 2010, or as amended. Available at http://csrc.nist.gov.

6. NIST Special Publication 800-78-3, Cryptographic Algorithms and Key Sizes for

897 Personal Identity Verification, NIST, Dec 2010, or as amended. Available at

http://csrc.nist.gov.

7. X.509 Certificate Policy for the U.S. Federal PKI Common Policy Framework, Version

1.21, December 2012. Available at http://www.idmanagement.gov/documents/common-

policy-framework-certificate-policy.

8. NIST Special Publication 800-63-2, Electronic Authentication Guideline, NIST, August

2013, or as amended. Available at http://csrc.nist.gov.

9. FIPS Publication 140-2, Security Requirements for Cryptographic Modules, NIST, May

25, 2001, or as amended. Available at http://csrc.nist.gov/publications/fips/fips140-

2/fips1402.pdf.

10. Special Publication 800-157, DRAFT Guidelines for Derived Personal Identity

Verification (PIV) Credentials, NIST, May 2014. Available at http://csrc.nist.gov.

77

11. Corella, Franscisco PhD and Karen Lewison, PhD. Techniques for Implementing Derived

Credentials. Revised September 13, 2012. Available at

http://pomcor.com/whitepapers/DerivedCredentials.pdf.

12. OMB Memorandum M-04-04, E-Authentication Guidance for Federal Agencies, OMB,

December 2003. Available at

http://www.whitehouse.gov/sites/default/files/omb/memoranda/fy04/m04-04.pdf.

13. Public key infrastructure. (n.d.). The Free On-line Dictionary of Computing. Retrieved

March 30, 2014, from Dictionary.com website:

http://dictionary.reference.com/browse/public key infrastructure.

14. Adams, Carlisle & Lloyd, Steve (2003). Understanding PKI: concepts, standards, and

deployment considerations. Addison-Wesley Professional. pp. 11–15. ISBN 978-0-672-

32391-1.

15. Microsoft Exchange. Understanding Public Key Cryptography. Available at

http://technet.microsoft.com/en-us/library/aa998077(v=exchg.65).aspx.

16. Cooper, et al. Internet X.509 Public Key Infrastructure Certificate and Certificate

Revocation List (CRL) Profile, RFC 5280, May 2008.

17. DoD Common Access Card. Available at http://cac.mil/.

18. Military CAC. Available at http://militarycac.com.

19. Department of Defense. United States Department of Defense X.509 Certificate Policy.

May 4, 2011. Available at http://iase.disa.mil/pki-pke/downloads/unclass-dod_cp_v10-

2final_4may11.pdf

20. CAC/PKI Training Guide. Common Access Card/Public Key Infrastructure. Available at

http://www.idmanagement.gov/sites/default/files/documents/CACpkiTrainingGuide.pdf.

21. Motorola CRYPTR MICRO. MicorSD Encryption Unit for Mobile Devices. Product

Spec Sheet. Available at

http://www.motorolasolutions.com/web/Business/Products/Two-Way%20Radios%20-

%20Public%20Safety/Encryption/AME1000/CRYPTR_micro_Encryption_Unit/CRYPT

R_micro_spec_sheet.pdf.

22. SanDisk Corporation. TrustedFlash v1.0 – microSD. Non-Proprietary Security Policy,

version 2.2 October 22, 2009. Available at

http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1191.pdf.

78

23. Gemalto IDPrime PIV Card v1.55. Technical Brochure. Available at

http://www.gemalto.com/products/piv_card/product_brief.html.

24. OpenSSL and SSL/TSL toolkit. Available at https://www.openssl.org/.

25. OpenSC – tools and libraries for smart cards. Available at

https://github.com/OpenSC/OpenSC/wiki.

26. Piv-tool. Available at https://www.opensc-project.org/opensc/wiki/PivTool.

27. Pkcs15-tool. Available at http://linux.die.net/man/1/pkcs15-tool.

28. Engine_pkcs11. Available at https://github.com/OpenSC/OpenSC/wiki/Engine-pkcs11-

quickstart.

29. Microsoft. TechNet. Digital Certificates. Available at http://technet.microsoft.com/en-

us/library/cc962029.aspx.

30. Draft NIST Interagency Report 7981, Mobile, PIV, and Authentication, March 2014.

Available at http://csrc.nist.gov.

31. Turner, Sean, and Russ Housley. Implementing Email Security and Tokens: Current

Standards, Tools, and Practices. Indianapolis: Wiley Publishing, 2008.

32. Lindell, Yehuda. The Security Advantages of Hardware Tokens over Software Toekns

for PKI Applications. White Paper. Available at

ftp://ftp.ealaddin.com/pub/marketing/eToken/White_Papers/WP_eToken_HardSoftToken

s.pdf

33. Bar-El, Hagai. Security Implications of Hardware vs. Software Cryptographic Modules.

Discretix Technologies Ltd. Available at

http://leetupload.com/database/Misc/Papers/Asta%20la%20Vista/security_implications_o

f_hw_vs_sw_cryptographic_modules.pdf

34. Corella, Franscisco PhD and Karen Lewison, PhD. An Example of a Derived Credentials

Architecutre. Revised April 27, 2014. Available at

http://pomcor.com/techreports/DerivedCredentialsExample.pdf

35. Linn, John. Trust Models and Management in Public-Key Infrastructures. RSA

Laboratories. November 6, 2000. Available at ftp://ftp.rsa.com/pub/pdfs/PKIPaper1.pdf

http://leetupload.com/database/Misc/Papers/Asta%20la%20Vista/security_implications_of_hw_vs_sw_cryptographic_modules.pdf
http://leetupload.com/database/Misc/Papers/Asta%20la%20Vista/security_implications_of_hw_vs_sw_cryptographic_modules.pdf
http://pomcor.com/techreports/DerivedCredentialsExample.pdf

79

Appendix A: Actual DoD CAC Certificates

A.1: CAC Authentication Certificate

al@al-gnome:~/pki_project/cac_certs$ openssl x509 -in cac_auth.crt -text

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number: 1043279 (0xfeb4f)

 Signature Algorithm: sha1WithRSAEncryption

 Issuer: C=US, O=U.S. Government, OU=DoD, OU=PKI, CN=DOD CA-30

 Validity

 Not Before: Jun 4 00:00:00 2012 GMT

 Not After : Jun 3 23:59:59 2015 GMT

 Subject: C=US, O=U.S. Government, OU=DoD, OU=PKI, OU=USCG,

 CN=SOWERS.DAVID.A.1274982450

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 Public-Key: (2048 bit)

 Modulus:

 00:ba:83:95:cd:56:6e:72:a0:5d:d5:2a:e9:44:b3:

 82:0e:a0:8e:4a:e0:95:73:d5:c0:c8:df:e6:fd:34:

 c3:2e:03:8c:07:cf:37:e6:57:28:2f:1a:8e:2f:25:

 5e:9c:d2:38:1c:76:13:9b:52:d1:c2:b7:0e:15:6c:

 23:19:0f:6c:ec:b9:94:66:43:0f:17:ca:98:df:27:

 fa:a0:d0:00:06:57:c2:65:cc:94:c5:4c:a3:bd:b8:

 2f:aa:d9:a1:86:97:ea:1a:36:72:a0:38:eb:82:f4:

 da:d7:64:50:0f:69:d4:92:70:81:db:d5:9a:83:47:

 e5:53:d6:e1:7c:d8:1c:79:f0:03:ee:3d:b1:02:ca:

 ba:7e:80:14:59:0e:3b:53:62:5a:d4:25:71:3d:b5:

 e1:7e:70:ea:81:14:ff:ff:1b:14:eb:82:d9:31:dc:

 76:8d:35:f3:00:7d:17:cf:6e:f1:75:11:25:b0:6d:

 cf:7e:d3:34:8a:d2:cd:6e:16:5e:f3:10:aa:dc:7f:

 61:62:1e:08:ee:6f:9c:3d:f3:6f:1c:b1:6e:43:18:

 14:21:8b:a5:3d:85:81:6a:22:ca:71:aa:fc:ad:f2:

 e1:cf:9b:3d:72:92:09:46:b4:2d:43:fd:72:c4:d7:

 52:38:66:bb:a2:6f:ee:b1:91:a0:30:96:d4:7f:04:

 59:ed

 Exponent: 65537 (0x10001)

 X509v3 extensions:

 X509v3 Authority Key Identifier:

80

 keyid:08:4E:D5:A4:3C:2A:04:9B:93:1B:B7:04:08:8E:74:B9:06:7C:0D:A3

 X509v3 CRL Distribution Points:

 Full Name:

 URI:http://crl.disa.mil/crl/DODCA_30.crl

 X509v3 Key Usage: critical

 Digital Signature

 X509v3 Certificate Policies:

 Policy: 2.16.840.1.101.2.1.11.9

 Policy: 2.16.840.1.101.2.1.11.19

 X509v3 Subject Key Identifier:

 56:74:52:18:55:AA:17:A3:D1:5E:19:00:3B:A8:65:FA:78:E0:38:AD

 Authority Information Access:

 CA Issuers - URI:http://crl.disa.mil/sign/DODCA_30.cer

 OCSP - URI:http://ocsp.disa.mil

 X509v3 Subject Alternative Name:

 othername:<unsupported>, othername:<unsupported>

 X509v3 Subject Directory Attributes:

 0.0...+.......1...US

 X509v3 Extended Key Usage:

 Microsoft Smartcardlogin, TLS Web Client Authentication

 Signature Algorithm: sha1WithRSAEncryption

 2e:6a:78:78:17:59:01:10:2c:84:b9:dd:74:32:1c:37:d1:8d:

 b0:76:ce:2e:7e:e5:6a:f3:fd:43:4a:f8:c7:47:cb:7c:59:36:

 d3:7e:be:80:db:83:87:10:eb:21:d7:7b:48:d5:8a:63:d0:e0:

 cb:39:b9:92:d7:75:01:8a:1a:49:e5:5d:16:c3:f0:a6:0f:2f:

 65:68:91:0d:e2:53:96:98:f1:9e:5b:54:c2:e9:d9:2e:31:b1:

 7b:b2:16:2f:11:69:f4:fd:50:77:6b:0a:a4:51:51:4e:1c:9b:

 96:33:82:1e:22:41:57:98:4c:a4:76:2b:4f:71:55:ca:34:0a:

 4e:2c:b1:4a:72:6f:4e:7f:93:cd:3c:27:e2:29:57:12:83:db:

 7d:5f:5f:7f:e5:38:4d:aa:c4:e7:71:05:7c:11:19:67:57:5b:

 ef:aa:da:86:aa:1a:4f:63:73:fc:55:45:22:fe:f0:ac:3e:e9:

 98:0b:f1:cf:d5:03:2d:87:af:bd:70:33:f4:f0:e8:35:e5:6b:

 7f:c8:70:d2:6f:85:1f:be:78:0d:d2:4e:f8:5b:78:f2:87:95:

 04:f8:6d:9e:f5:42:83:c1:84:d4:ec:b6:57:33:c0:fc:d1:5b:

 13:87:27:8e:a3:bb:b2:04:71:1f:da:a6:17:10:e3:4e:85:63:

 86:dd:26:41

81

A.2: CAC Digital Signature Certificate

al@al-gnome:~/pki_project/cac_certs$ openssl x509 -in cac_digsig.crt -text

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number: 1057905 (0x102471)

 Signature Algorithm: sha1WithRSAEncryption

 Issuer: C=US, O=U.S. Government, OU=DoD, OU=PKI, CN=DOD EMAIL CA-30

 Validity

 Not Before: Jun 4 00:00:00 2012 GMT

 Not After : Jun 3 23:59:59 2015 GMT

 Subject: C=US, O=U.S. Government, OU=DoD, OU=PKI, OU=USCG,

 CN=SOWERS.DAVID.A.1274982450

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 Public-Key: (2048 bit)

 Modulus:

 00:ca:93:9b:98:7b:de:d6:f7:0f:c9:3d:7d:61:6b:

 c3:0e:b6:ce:15:8f:8e:62:b6:87:78:10:2c:4b:f5:

 3d:72:09:06:57:0f:c7:60:60:b9:93:2f:43:3d:1d:

 ef:43:28:9a:ea:5c:07:26:53:7e:f7:3a:fd:97:15:

 7b:3b:29:1f:91:2d:6e:12:63:14:94:a9:17:8a:7e:

 aa:6f:81:5c:02:c6:98:03:87:a2:2b:04:f9:4a:77:

 6f:ed:c3:d8:d0:68:74:ab:7b:03:0f:e5:69:39:ad:

 f9:2c:04:1e:8e:2f:1a:cc:31:10:10:76:f1:50:63:

 af:3b:54:c5:2e:1e:05:87:8e:5c:70:30:0d:e2:16:

 6b:c2:a3:ad:cc:bc:cd:43:2e:ad:69:9f:67:4d:c2:

 d0:60:c8:9d:ec:88:a3:93:4d:e3:eb:a9:e0:80:d5:

 5e:cf:f6:b0:4b:5e:83:e4:c9:b9:f7:11:e9:8a:bc:

 62:bc:12:07:2e:8c:52:53:6e:a5:04:9f:f7:f1:6e:

 40:af:79:89:d9:de:11:f2:16:d2:4a:b7:07:64:48:

 0e:af:43:90:25:3c:88:47:dc:cb:c5:be:1f:b3:69:

 cd:6e:a7:92:ba:e1:a8:bd:6c:90:9e:7e:00:ca:77:

 88:d5:20:2b:be:4f:ee:29:aa:99:6c:2e:e4:79:a9:

 11:27

 Exponent: 65537 (0x10001)

 X509v3 extensions:

 X509v3 Authority Key Identifier:

 keyid:35:61:66:28:09:BC:56:25:5B:8B:CC:BF:81:5E:61:2C:30:39:D3:21

 X509v3 CRL Distribution Points:

82

 Full Name:

 URI:http://crl.disa.mil/crl/DODEMAILCA_30.crl

 X509v3 Key Usage: critical

 Digital Signature, Non Repudiation

 X509v3 Certificate Policies:

 Policy: 2.16.840.1.101.2.1.11.9

 Policy: 2.16.840.1.101.2.1.11.19

 X509v3 Subject Key Identifier:

 0C:D4:9C:77:4A:28:14:B2:78:06:86:4E:27:A9:07:35:D9:C4:AB:2E

 Authority Information Access:

 CA Issuers - URI:http://crl.disa.mil/sign/DODEMAILCA_30.cer

 OCSP - URI:http://ocsp.disa.mil

 X509v3 Subject Alternative Name:

 email:David.A.Sowers@uscg.mil, othername:<unsupported>

 X509v3 Subject Directory Attributes:

 0.0...+.......1...US

 X509v3 Extended Key Usage:

 Microsoft Smartcardlogin, TLS Web Client Authentication, E-mail Protection

 Signature Algorithm: sha1WithRSAEncryption

 7b:e9:c0:ec:08:83:b4:ee:53:fc:6a:41:0a:55:cd:27:60:d9:

 bd:44:28:84:b9:b9:1b:26:ca:33:91:b1:31:91:27:3a:19:d2:

 f0:e4:99:9d:6a:4a:3c:ec:7a:b2:70:42:82:62:ca:f5:e5:1c:

 4d:88:3e:a7:18:e5:96:4c:6a:1f:90:62:0c:22:3a:37:fa:0b:

 05:d1:e2:ee:22:83:a8:b8:a4:ea:b2:cc:b3:66:92:24:ec:6c:

 91:7e:0e:84:b0:ba:bc:41:91:be:d3:54:c4:c8:ef:4c:11:86:

 fc:9f:81:4a:33:6c:b0:58:dd:cf:e5:f5:45:cc:59:21:57:96:

 08:4d:a2:8a:10:35:e5:7d:a9:26:92:29:6d:a7:6b:2d:b1:84:

 89:43:9e:c9:ee:43:69:20:c8:b3:60:e1:64:a0:35:23:1e:a2:

 1f:30:84:d7:b9:d6:9d:3e:44:dc:33:50:3e:a7:18:e6:b1:ab:

 ff:0c:ac:30:8f:da:0c:5a:c8:6e:f0:88:69:aa:9a:c7:6b:e4:

 33:29:40:41:5b:3a:3f:b8:b1:a2:62:cb:5b:fb:7e:7d:f6:b7:

 34:6e:cf:46:ac:18:03:bb:30:43:9c:52:c6:2f:34:00:a4:f3:

 f0:c8:63:e4:0b:b3:bb:60:79:5e:90:ad:b1:3f:a2:d4:c7:6f:

 4b:e7:1a:15

83

A.3: CAC Key Management Key

al@al-gnome:~/pki_project/cac_certs$ openssl x509 -in cac_keyman.crt -text

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number: 1057908 (0x102474)

 Signature Algorithm: sha1WithRSAEncryption

 Issuer: C=US, O=U.S. Government, OU=DoD, OU=PKI, CN=DOD EMAIL CA-30

 Validity

 Not Before: Jun 4 00:00:00 2012 GMT

 Not After : Jun 3 23:59:59 2015 GMT

 Subject: C=US, O=U.S. Government, OU=DoD, OU=PKI, OU=USCG,

 CN=SOWERS.DAVID.A.1274982450

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 Public-Key: (2048 bit)

 Modulus:

 00:96:4e:07:73:91:c9:d2:88:21:b7:15:41:34:82:

 65:78:29:3e:fa:d2:44:0f:a7:2e:8a:7e:43:cb:d7:

 f9:ca:06:fd:86:45:86:2f:ae:f1:7d:a6:85:48:32:

 0f:d5:34:8e:dd:49:fa:a4:7d:b5:f7:c8:54:88:26:

 9c:08:e2:c6:b9:0e:d8:5a:63:21:ae:99:64:24:38:

 3f:f6:89:46:5c:3c:39:9e:65:a3:09:99:21:44:21:

 e1:c3:a2:2e:d7:f4:42:60:bd:c9:ba:8b:09:fd:d1:

 60:e0:0c:fe:f9:fd:fe:8e:09:ea:ae:2f:28:5e:07:

 45:8a:b5:31:d1:bd:9a:40:74:71:27:23:07:e6:1b:

 7f:25:ac:e7:63:74:0d:43:aa:27:15:fe:0c:0a:e1:

 96:8a:f2:02:9c:b4:5c:a5:02:d8:fa:0b:91:e4:a2:

 0e:da:cd:5c:ee:d4:95:5d:b0:0f:84:de:bb:42:96:

 5f:52:11:a3:f8:64:d9:c8:29:ab:6f:00:f3:85:ec:

 1e:44:83:92:85:74:e5:57:48:e6:63:f3:62:07:1f:

 8f:ce:8b:ab:78:77:df:f3:03:7e:c1:c8:85:cd:98:

 86:28:c9:17:5d:3a:db:89:6b:fa:1d:d7:86:00:10:

 e9:17:b8:a2:1e:83:54:71:0a:24:38:bd:87:c1:7e:

 d2:4d

 Exponent: 65537 (0x10001)

 X509v3 extensions:

 X509v3 Authority Key Identifier:

84

 keyid:35:61:66:28:09:BC:56:25:5B:8B:CC:BF:81:5E:61:2C:30:39:D3:21

 X509v3 CRL Distribution Points:

 Full Name:

 URI:http://crl.disa.mil/crl/DODEMAILCA_30.crl

 X509v3 Key Usage: critical

 Key Encipherment

 X509v3 Certificate Policies:

 Policy: 2.16.840.1.101.2.1.11.9

 Policy: 2.16.840.1.101.2.1.11.19

 X509v3 Subject Key Identifier:

 A1:4D:99:AE:1E:F6:EA:2C:68:0B:EF:38:2C:E4:71:59:0B:24:6E:5E

 Authority Information Access:

 CA Issuers - URI:http://crl.disa.mil/sign/DODEMAILCA_30.cer

 OCSP - URI:http://ocsp.disa.mil

 X509v3 Subject Alternative Name:

 email:David.A.Sowers@uscg.mil

 X509v3 Subject Directory Attributes:

 0.0...+.......1...US

 Signature Algorithm: sha1WithRSAEncryption

 84:ba:f7:dc:70:1e:19:86:a8:5a:14:73:80:9b:6b:ce:df:e8:

 a2:70:f8:d1:a3:9d:9a:3b:a1:fe:44:b1:30:48:51:da:c2:b3:

 a3:40:5d:95:b8:51:f1:57:0a:54:b1:a9:88:4d:9b:eb:c1:7a:

 a2:32:38:6d:64:a8:4a:a6:da:68:e0:9c:34:73:e7:db:14:a6:

 74:57:cf:31:e4:5c:6b:6d:0d:4d:ad:d7:3b:37:c9:a9:e1:67:

 3e:68:e0:a7:68:28:9e:ea:25:be:7b:70:d3:dc:57:ca:56:79:

 5c:3d:f3:be:9d:9d:52:1b:ff:42:27:05:38:e7:82:f7:ff:2d:

 67:6d:9b:c3:c7:4b:38:ae:dc:0d:d3:fc:fb:aa:d0:d0:3a:e6:

 20:7b:c2:6c:0b:43:a5:be:54:20:a4:12:83:b9:b6:60:31:22:

 2e:d1:41:f4:7d:09:cb:5f:39:76:30:ba:bf:ab:bb:23:c0:2d:

 b4:d3:cb:ee:7b:24:c4:a3:1f:9d:49:ef:c2:27:4d:01:e0:62:

 30:02:8a:8a:1c:68:cb:34:42:06:15:48:d1:d1:7b:ff:2d:06:

 b4:a1:da:25:ff:a7:9d:9c:4c:30:cc:b3:91:b6:78:7f:ae:cd:

 ef:b9:4e:c9:f3:5e:47:e0:3a:0c:e3:20:34:c8:84:06:1c:0e:

 f5:0b:3e:47

85

Appendix B: OpenSSL Configuration File

OpenSSL Configuration file for simulated DoD Multi-level CA

This definition stops the following lines choking if HOME isn't

defined.

HOME = .

RANDFILE = $ENV::HOME/.rnd

[ca]

default_ca = CA_default # The default ca section

[CA_dodrootca]

dir = /home/al/pki_project/ssl/DoDRootCA # Where everything is kept

certs = $dir/DoDCAI # Where the issued certs are kept

database = $dir/index/index.txt # database index file.

new_certs_dir = $dir/DoDCAI # default place for new certs.

certificate = $dir/dodrootca.crt # The CA certificate

serial = $dir/serial/serial # The current serial number

#crl = $dir/crl.pem # The current CRL

private_key = $dir/dodrootca.key # The private key

RANDFILE = $dir/.rand # private random number file

x509_extensions = dodcai # The extentions to add to the cert

name_opt = ca_default # Subject Name options

cert_opt = ca_default # Certificate field options

default_days = 3650 # how long to certify for

default_crl_days= 7 # how long before next CRL

default_md = sha1 # which md to use.

preserve = no # keep passed DN ordering

policy = policy_match

A new one - quells a complaint from openssl ca

#unique_subject = yes

86

[CA_dodcai]

dir = /home/al/pki_project/ssl/DoDRootCA/DoDCAI # Where everything is kept

certs = $dir/UserCerts/certs # Where the issued certs are kept

#crl_dir = $dir/crl # Where the issued crl are kept

database = $dir/index/index.txt # database index file.

new_certs_dir = $dir/UserCerts/certs # default place for new certs.

certificate = $dir/dodcai.crt # The CA certificate

serial = $dir/serial/serial # The current serial number

private_key = $dir/dodcai.key # The private key

RANDFILE = $dir/.rand # private random number file

x509_extensions = usr_cert # The extentions to add to the cert

Comment out the following two lines for the "traditional"

(and highly broken) format.

name_opt = ca_default # Subject Name options

cert_opt = ca_default # Certificate field options

default_days = 1085 # how long to certify for

default_crl_days= 7 # how long before next CRL

default_md = sha1 # which md to use.

preserve = no # keep passed DN ordering

policy = policy_user

[CA_dccai]

dir = /home/al/pki_project/ssl/DoDRootCA/DoDDCCAI # Where everything is kept

certs = $dir/DCCerts # Where the issued certs are kept

#crl_dir = $dir/crl # Where the issued crl are kept

database = $dir/index/index.txt # database index file.

new_certs_dir = $dir/DCCerts # default place for new certs.

certificate = $dir/doddci.crt # The CA certificate

serial = $dir/serial/serial # The current serial number

#crl = $dir/crl.pem # The current CRL

private_key = $dir/doddci.key # The private key

RANDFILE = $dir/.rand # private random number file

87

x509_extensions = dc # The extensions to add to the cert

Comment out the following two lines for the "traditional"

(and highly broken) format.

name_opt = ca_default # Subject Name options

cert_opt = ca_default # Certificate field options

default_days = 1085 # how long to certify for

default_crl_days= 7 # how long before next CRL

default_md = sha1 # which md to use.

preserve = no # keep passed DN ordering

policy = policy_user

[CA_usercerts]

dir = /home/al/pki_project/ssl/DoDRootCA/DoDCAI/UserCerts # Where everything

is kept

certs = $dir/DCcerts # Where the issued certs are kept

#crl_dir = $dir/crl # Where the issued crl are kept

database = $dir/index/index.txt # database index file.

new_certs_dir = $dir/DCcerts # default place for new certs.

certificate = $dir/usercerts.crt # The CA certificate

serial = $dir/serial/serial # The current serial number

#crl = $dir/crl.pem # The current CRL

private_key = $dir/usercerts.key # The private key

RANDFILE = $dir/.rand # private random number file

x509_extensions = dc # The extentions to add to the cert

Comment out the following two lines for the "traditional"

(and highly broken) format.

name_opt = ca_default # Subject Name options

cert_opt = ca_default # Certificate field options

default_days = 7 # how long to certify for

default_crl_days= 7 # how long before next CRL

default_md = sha1 # which md to use.

preserve = no # keep passed DN ordering

policy = policy_dc

88

unique_subject = yes

For the CA policy

[policy_match]

countryName = match

#localityName = match

organizationName = match

organizationalUnitName = optional

commonName = supplied

emailAddress = optional

[policy_user]

countryName = match

#localityName = match

organizationName = match

organizationalUnitName = optional

commonName = supplied

emailAddress = supplied

[policy_dc]

countryName = match

#localityName = match

organizationName = match

organizationalUnitName = optional

commonName = supplied

emailAddress = match

[req]

default_bits = 1024

default_keyfile = privkey.pem

distinguished_name = req_distinguished_name

x509_extensions = v3_req # The extentions to add to the self signed cert

string_mask = nombstr

req_extensions = v3_req # The extensions to add to a certificate request

[req_distinguished_name]

C = US

O = U.S. Government

0.OU = DoD

1.OU = PKI

89

[dodrootca]

#These extensions are added to the self signed Root Cert

basicConstraints=CA:TRUE

keyUsage = digitalSignature, keyCertSign, cRLSign

subjectKeyIdentifier=hash

[dodcai]

#Extensions added to certs signded by the DoD Root for DoD CA I

basicConstraints=CA:TRUE

keyUsage = digitalSignature, keyCertSign, cRLSign

subjectKeyIdentifier=hash

authorityKeyIdentifier=keyid

certificatePolicies=2.16.840.1.101.2.1.11.5, 2.16.840.1.101.2.1.11.9, 2.16.840.1.101.2.1.11.10

[usr_cert]

These extensions are added when 'ca' signs a user request.

basicConstraints=CA:TRUE

keyUsage = digitalSignature, keyCertSign, nonRepudiation

extendedKeyUsage= clientAuth, msSmartcardLogin, emailProtection

subjectKeyIdentifier=hash

authorityKeyIdentifier=keyid,issuer:always

certificatePolicies= 2.16.840.1.101.2.1.11.9, 2.16.840.1.101.2.1.11.19

subjectAltName=email:copy

[dc]

basicConstraints=CA:FALSE

keyUsage = digitalSignature, nonRepudiation

subjectKeyIdentifier=hash

authorityKeyIdentifier=keyid,issuer:always

[v3_req]

Extensions to add to a certificate request

basicConstraints = CA:FALSE

keyUsage = nonRepudiation, digitalSignature, keyEncipherment

[crl_ext]

90

CRL extensions.

Only issuerAltName and authorityKeyIdentifier make any sense in a CRL.

issuerAltName=issuer:copy

authorityKeyIdentifier=keyid:always,issuer:always

91

Appendix C: Mock DoD CA Setup

Setting up the simulated DoD Certificate Authority

########### Configuration File ###############

########### End Config ##############

############## Set up Directories ##############

##Set up all directories for CA's

sudo mkdir /DoDRootCA

sudo mkdir /DoDRootCA/DoDCAI

sudo mkdir /DoDRootCA/DoDCAI/UserCerts

sudo mkdir /DoDRootCA/DoDDCCAI

sudo mkdir /DoDRootCA/DoDDCCAI/DCCerts

Set up directory for User and DC certs

sudo mkdir /DoDRootCA/DoDCAI/UserCerts/certs

sudo mkdir /DoDRootCA/DoDCAI/UserCerts/DCCerts

sudo mkdir /DoDRootCA/DoDCAI/UserCerts/private_keys

sudo mkdir /DoDRootCA/DoDDCCAI/certs

sudo mkdir /DoDRootCA/DoDDCCAI/P12

sudo mkdir /DoDRootCA/DoDDCCAI/private_keys

In each folder for CA's and User/DC folders

sudo mkdir index

sudo mkdir serial

cd ./index

touch index.txt

cd ./serial

echo "01" > serial

############# End Directories ################################

############ Self Signed CA ###########

Generate Root CA Private Key and CSR

pass phrase "root"

al@al-gnome:~/thesis/ssl/DoDRootCA$ openssl req -newkey rsa:2048 -sha1 -keyout

dodrootca.key -out dodrootca.csr -config /home/al/thesis/ssl/openssl.cnf

Generating a 2048 bit RSA private key

..+++

.................+++

92

writing new private key to 'dodrootca.key'

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

US [US]:

Organization [U.S. Government]:

Organizatinal Unit [DoD]:

Organizatinal Unit [PKI]:

Common Name (eg, YOUR name) []:DoD Root CA Sim

Email Address []:

Self Sign the Root CA Sim Cert

al@al-gnome:~/thesis/ssl/DoDRootCA$ openssl x509 -req -in dodrootca.csr -sha1 -signkey

dodrootca.key -out dodrootca.crt -extensions dodrootca -days 3650

Signature ok

subject=/C=US/O=U.S. Government/OU=DoD/OU=PKI/CN=DoD Root CA Sim

Getting Private key

Enter pass phrase for dodrootca.key:

Install the certificate

sudo mkdir /usr/share/ca-certificates/extra

sudo cp dodrootca.pem /usr/share/ca-certificates/extra/dodrootca.crt

sudo dpkg-reconfigure ca-certificates

#select the /extra/dodrootca.crt to install

sudo update-ca-certificates

#Verify the root certificate

al@al-gnome:~/thesis/ssl/DoDRootCA$ openssl verify dodrootca.crt

dodrootca.crt: OK

############### End CA ######################

########### Set up Intermediate CAs ########

####### DoD CA I #####

al@al-gnome:~/thesis/ssl/DoDRootCA$ cd DoDCAI/

al@al-gnome:~/thesis/ssl/DoDRootCA/DoDCAI$ openssl genrsa -des3 -out dodcai.key 2048

Generating RSA private key, 2048 bit long modulus

93

...+++

...+++

e is 65537 (0x10001)

Enter pass phrase for dodcai.key:

Verifying - Enter pass phrase for dodcai.key:

##pass phrase "dodcai"

##Generate CSR

al@al-gnome:~/thesis/ssl/DoDRootCA/DoDCAI$ openssl req -new -key dodcai.key -config

/home/al/thesis/ssl/openssl.cnf -out dodcai.csr

Enter pass phrase for dodcai.key:

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

US [US]:

Organization [U.S. Government]:

Organizatinal Unit [DoD]:

Organizatinal Unit [PKI]:

Common Name (eg, YOUR name) []:DoD CA I Sim

Email Address []:

#Sign CSR with the DoD Root CA

al@al-gnome:~/thesis/ssl/DoDRootCA/DoDCAI$ openssl ca -config

/home/al/thesis/ssl/openssl.cnf -name CA_dodrootca -in dodcai.csr -out dodcai.crt

Using configuration from /home/al/thesis/ssl/openssl.cnf

Enter pass phrase for /home/al/thesis/ssl/DoDRootCA/dodrootca.key:

Check that the request matches the signature

Signature ok

Certificate Details:

 Serial Number: 1 (0x1)

 Validity

 Not Before: Mar 1 19:22:44 2014 GMT

 Not After : Feb 27 19:22:44 2024 GMT

 Subject:

 countryName = US

 organizationName = U.S. Government

 organizationalUnitName = DoD

 organizationalUnitName = PKI

 commonName = DoD CA I Sim

94

 X509v3 extensions:

 X509v3 Basic Constraints:

 CA:TRUE

 X509v3 Key Usage:

 Digital Signature, Certificate Sign, CRL Sign

 X509v3 Subject Key Identifier:

 1F:EE:0E:91:B3:0B:4A:D8:BE:7B:90:B8:14:F5:84:1B:C0:DD:C7:4B

 X509v3 Authority Key Identifier:

 0.

 X509v3 Certificate Policies:

 Policy: 2.16.840.1.101.2.1.11.5

 Policy: 2.16.840.1.101.2.1.11.9

 Policy: 2.16.840.1.101.2.1.11.10

Certificate is to be certified until Feb 27 19:22:44 2024 GMT (3650 days)

Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y

Write out database with 1 new entries

Data Base Updated

Verify

al@al-gnome:~$ openssl verify /home/al/thesis/ssl/DoDRootCA/DoDCAI/dodcai.crt

/home/al/thesis/ssl/DoDRootCA/DoDCAI/dodcai.crt: OK

########## DoD DC Intermediate ######################

Generate RSA Key

al@al-gnome:~/thesis/ssl/DoDRootCA/DoDDCCAI$ openssl genrsa -des3 -out

./private_keys/doddci.key 2048

Generating RSA private key, 2048 bit long modulus

......+++

...........................+++

e is 65537 (0x10001)

Enter pass phrase for ./private_keys/doddci.key:

Verifying - Enter pass phrase for ./private_keys/doddci.key:

##Pass phrase "doddci"

Generate CSR

al@al-gnome:~/thesis/ssl/DoDRootCA/DoDDCCAI$ openssl req -new -key

./private_keys/doddci.key -config /home/al/thesis/ssl/openssl.cnf -out doddci.csr

95

Enter pass phrase for ./private_keys/doddci.key:

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

US [US]:

Organization [U.S. Government]:

Organizatinal Unit [DoD]:

Organizatinal Unit [PKI]:

Common Name (eg, YOUR name) []:DoD DC CA I Sim

Email Address []:

Sign the CSR with the DoD Root CA ######

al@al-gnome:~/thesis/ssl/DoDRootCA/DoDDCCAI$ openssl ca -config

/home/al/thesis/ssl/openssl.cnf -name CA_dodrootca -in doddci.csr -out doddci.crt

Using configuration from /home/al/thesis/ssl/openssl.cnf

Enter pass phrase for /home/al/thesis/ssl/DoDRootCA/dodrootca.key:

Check that the request matches the signature

Signature ok

Certificate Details:

 Serial Number: 2 (0x2)

 Validity

 Not Before: Mar 1 19:51:51 2014 GMT

 Not After : Feb 27 19:51:51 2024 GMT

 Subject:

 countryName = US

 organizationName = U.S. Government

 organizationalUnitName = DoD

 organizationalUnitName = PKI

 commonName = DoD DC CA I Sim

 X509v3 extensions:

 X509v3 Basic Constraints:

 CA:TRUE

 X509v3 Key Usage:

 Digital Signature, Certificate Sign, CRL Sign

 X509v3 Subject Key Identifier:

 40:C1:8C:FE:D4:64:B9:76:8D:B2:7A:07:59:B1:FC:9A:F4:7F:AC:21

 X509v3 Authority Key Identifier:

 0.

 X509v3 Certificate Policies:

96

 Policy: 2.16.840.1.101.2.1.11.5

 Policy: 2.16.840.1.101.2.1.11.9

 Policy: 2.16.840.1.101.2.1.11.10

Certificate is to be certified until Feb 27 19:51:51 2024 GMT (3650 days)

Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y

Write out database with 1 new entries

Data Base Updated

97

Appendix D: User Certificates on Gemalto PIV II

Smart Card

D.1 User1 Authentication Certificate

Generate Keys on the card ############

Set Path to the PIV_EXT_AUTH_KEY

al@al-gnome:~$ export

PIV_EXT_AUTH_KEY=/home/al/pki_project/gemalto_card/piv_auth_key

Generate a RSA:2048 key

al@al-gnome:~$ piv-tool -A M:9B:03 -G 9A:07 -o

/home/al/pki_project/gemalto_card/pubkey.01.user2

Generate CSR

Set path for slot key (use output from step 1)

al@al-gnome:~$ export PIV_9A_KEY=/home/al/pki_project/gemalto_card/pubkey.1.user2

al@al-gnome:~$ openssl

Set Engine first

OpenSSL> engine dynamic -vvvv -pre SO_PATH:/usr/lib/ssl/engines/engine_pkcs11.so -pre

ID:pkcs11 -pre NO_VCHECK:1 -pre LIST_ADD:1 -pre LOAD -pre

MODULE_PATH:/usr/lib/x86_64-linux-gnu/opensc-pkcs11.so

(dynamic) Dynamic engine loading support

[Success]: SO_PATH:/usr/lib/ssl/engines/engine_pkcs11.so

[Success]: ID:pkcs11

[Success]: NO_VCHECK:1

[Success]: LIST_ADD:1

[Success]: LOAD

[Success]: MODULE_PATH:/usr/lib/x86_64-linux-gnu/opensc-pkcs11.so

Loaded: (pkcs11) pkcs11 engine

 SO_PATH: Specifies the path to the 'pkcs11-engine' shared library

 (input flags): STRING

 MODULE_PATH: Specifies the path to the pkcs11 module shared library

 (input flags): STRING

 PIN: Specifies the pin code

 (input flags): STRING

 VERBOSE: Print additional details

98

 (input flags): NO_INPUT

 QUIET: Remove additional details

 (input flags): NO_INPUT

 LOAD_CERT_CTRL: Get the certificate from card

 (input flags): [Internal]

 INIT_ARGS: Specifies additional initialization arguments to the pkcs11 module

 (input flags): STRING

Generate CSR

OpenSSL> req -new -config /home/al/pki_project/ssl/openssltest.cnf -engine pkcs11 -sha1 -key

slot_1-id_01 -keyform engine -out /home/al/pki_project/ssl/usercert.csr -text

engine "pkcs11" set.

PKCS#11 token PIN: ################## USE 1234 Auth PIN ###############

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [US]:

Organization Name (eg, company) [U.S. Government]:

Second Organization Name (eg, company) [PKI]:

Organizational Unit Name (eg, section) [DoD]:

Common Name (eg, YOUR name) []:User 2

Email Address []:user2@mil.mil

OpenSSL> quit

al@al-gnome:~$ openssl ca -config /home/al/pki_project/ssl/openssl.cnf -name CA_dodcai -in

/home/al/pki_project/ssl/usercert.csr -out

/home/al/pki_project/ssl/DoDRootCA/DoDCAI/UserCerts/certs/user2.crt

Using configuration from /home/al/pki_project/ssl/openssl.cnf

Enter pass phrase for /home/al/pki_project/ssl/DoDRootCA/DoDCAI/dodcai.key:

Check that the request matches the signature

Signature ok

Certificate Details:

 Serial Number: 2 (0x2)

 Validity

 Not Before: Mar 11 01:41:11 2014 GMT

 Not After : Feb 28 01:41:11 2017 GMT

 Subject:

 countryName = US

 organizationName = U.S. Government

 organizationalUnitName = PKI

 organizationalUnitName = DoD

99

 commonName = User 2

 emailAddress = user2@mil.mil

 X509v3 extensions:

 X509v3 Basic Constraints:

 CA:TRUE

 X509v3 Key Usage:

 Digital Signature, Non Repudiation, Certificate Sign

 X509v3 Extended Key Usage:

 TLS Web Client Authentication, Microsoft Smartcardlogin, E-mail Protection

 X509v3 Subject Key Identifier:

 6B:4A:D4:B2:CB:C9:B0:22:12:12:7C:9A:F5:11:19:9F:3A:11:DA:5D

 X509v3 Authority Key Identifier:

 keyid:1F:EE:0E:91:B3:0B:4A:D8:BE:7B:90:B8:14:F5:84:1B:C0:DD:C7:4B

 DirName:/C=US/O=U.S. Government/OU=DoD/OU=PKI/CN=DoD Root CA Sim

 serial:01

 X509v3 Certificate Policies:

 Policy: 2.16.840.1.101.2.1.11.9

 Policy: 2.16.840.1.101.2.1.11.19

Certificate is to be certified until Feb 28 01:41:11 2017 GMT (1085 days)

Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y

Write out database with 1 new entries

Data Base Updated

Store the Certificate on the Card

Set path for Auth Key again

al@al-gnome:~$ export

PIV_EXT_AUTH_KEY=/home/al/pki_project/gemalto_card/piv_auth_key

Store Cert on card

al@al-gnome:~$ piv-tool -A M:9B:03 -C 9A -i

/home/al/pki_project/ssl/DoDRootCA/DoDCAI/UserCerts/certs/user2.crt

Using reader with a card: SCM Microsystems Inc. SCR 331 [CCID Interface] (21120710216109)

00 00

Verify private key on card (Can also check certificate with --list-certificate

al@al-gnome:~$ pkcs15-tool -k

Using reader with a card: SCM Microsystems Inc. SCR 331 [CCID Interface] (21120710216109)

00 00

100

Private RSA Key [PIV AUTH key]

 Object Flags : [0x1], private

 Usage : [0x2E], decrypt, sign, signRecover, unwrap

 Access Flags : [0x1D], sensitive, alwaysSensitive, neverExtract, local

 ModLength : 2048

 Key ref : 154 (0x9A)

 Native : yes

 Auth ID : 01

 ID : 01

Verify Signature on Smart Card

al@al-gnome:~/pki_project/ssl/DoDRootCA/DoDCAI/UserCerts/DCcerts/test$ pkcs15-tool --

read-certificate 02 --output user2digsig.crt

Using reader with a card: SCM Microsystems Inc. SCR 331 [CCID Interface] (21120710216109)

00 00

al@al-gnome:~/pki_project/ssl/DoDRootCA/DoDCAI/UserCerts/DCcerts/test$ ls

hashed message signed user2digsig.crt

al@al-gnome:~/pki_project/ssl/DoDRootCA/DoDCAI/UserCerts/DCcerts/test$ openssl x509 -in

./user2digsig.crt -pubkey -noout > user2digsigpub.pem

al@al-gnome:~/pki_project/ssl/DoDRootCA/DoDCAI/UserCerts/DCcerts/test$ openssl dgst -

verify user2digsigpub.pem -sha256 -signature signed < message

Verified OK

D.2 User 1 Digital Signature Certificate

######## USER 1 DigSig

al@al-gnome:~$ export

PIV_EXT_AUTH_KEY=/home/al/pki_project/gemalto_card/piv_auth_key

al@al-gnome:~$ piv-tool -A M:9B:03 -G 9C:07 -o

/home/al/pki_project/gemalto_card/pubkey.02.user1

Using reader with a card: SCM Microsystems Inc. SCR 331 [CCID Interface] (21120710216109)

00 00

al@al-gnome:~$ export PIV_9C_KEY=/home/al/pki_project/gemalto_card/pubkey.02.user1

al@al-gnome:~$ openssl

OpenSSL> engine dynamic -vvvv -pre SO_PATH:/usr/lib/ssl/engines/engine_pkcs11.so -pre

ID:pkcs11 -pre NO_VCHECK:1 -pre LIST_ADD:1 -pre LOAD -pre

MODULE_PATH:/usr/lib/x86_64-linux-gnu/opensc-pkcs11.so

101

(dynamic) Dynamic engine loading support

[Success]: SO_PATH:/usr/lib/ssl/engines/engine_pkcs11.so

[Success]: ID:pkcs11

[Success]: NO_VCHECK:1

[Success]: LIST_ADD:1

[Success]: LOAD

[Success]: MODULE_PATH:/usr/lib/x86_64-linux-gnu/opensc-pkcs11.so

Loaded: (pkcs11) pkcs11 engine

 SO_PATH: Specifies the path to the 'pkcs11-engine' shared library

 (input flags): STRING

 MODULE_PATH: Specifies the path to the pkcs11 module shared library

 (input flags): STRING

 PIN: Specifies the pin code

 (input flags): STRING

 VERBOSE: Print additional details

 (input flags): NO_INPUT

 QUIET: Remove additional details

 (input flags): NO_INPUT

 LOAD_CERT_CTRL: Get the certificate from card

 (input flags): [Internal]

 INIT_ARGS: Specifies additional initialization arguments to the pkcs11 module

 (input flags): STRING

OpenSSL> req -new -config /home/al/pki_project/ssl/openssltest.cnf -engine pkcs11 -sha1 -key

slot_1-id_02 -keyform engine -out /home/al/pki_project/ssl/user1digsig02.csr -text

engine "pkcs11" set.

PKCS#11 token PIN:

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [US]:

Organization Name (eg, company) [U.S. Government]:

Second Organization Name (eg, company) [PKI]:

Organizational Unit Name (eg, section) [DoD]:

Common Name (eg, YOUR name) []:User 1 DigSig

Email Address []:user1@mil.mil

OpenSSL> quit

al@al-gnome:~$ openssl ca -config /home/al/pki_project/ssl/openssl.cnf -name CA_dodcai -in

/home/al/pki_project/ssl/user1digsig.csr -out

/home/al/pki_project/ssl/DoDRootCA/DoDCAI/UserCerts/certs/user1digsig.crt

Using configuration from /home/al/pki_project/ssl/openssl.cnf

102

Enter pass phrase for /home/al/pki_project/ssl/DoDRootCA/DoDCAI/dodcai.key:

Check that the request matches the signature

Signature ok

Certificate Details:

 Serial Number: 4 (0x4)

 Validity

 Not Before: Mar 11 04:19:36 2014 GMT

 Not After : Feb 28 04:19:36 2017 GMT

 Subject:

 countryName = US

 organizationName = U.S. Government

 organizationalUnitName = PKI

 organizationalUnitName = DoD

 commonName = User 1 DigSig

 emailAddress = user1@mil.mil

 X509v3 extensions:

 X509v3 Basic Constraints:

 CA:TRUE

 X509v3 Key Usage:

 Digital Signature, Non Repudiation, Certificate Sign

 X509v3 Extended Key Usage:

 TLS Web Client Authentication, Microsoft Smartcardlogin, E-mail Protection

 X509v3 Subject Key Identifier:

 B2:96:96:32:AC:F1:81:58:A9:A3:AE:A1:C0:F7:94:A8:4C:57:FD:23

 X509v3 Authority Key Identifier:

 keyid:1F:EE:0E:91:B3:0B:4A:D8:BE:7B:90:B8:14:F5:84:1B:C0:DD:C7:4B

 DirName:/C=US/O=U.S. Government/OU=DoD/OU=PKI/CN=DoD Root CA Sim

 serial:01

 X509v3 Certificate Policies:

 Policy: 2.16.840.1.101.2.1.11.9

 Policy: 2.16.840.1.101.2.1.11.19

Certificate is to be certified until Feb 28 04:19:36 2017 GMT (1085 days)

Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y

Write out database with 1 new entries

Data Base Updated

103

Appendix E: CAC Signed Derived Credential

E.1 Python Implementation Code

#!/usr/bin/env python

-*- coding: utf-8 -*-

import os

import subprocess

import shlex

import ConfigParser

import time

import shutil

import qrcode

import shutil

class GenDerivedCredential:

 _CERT_FROM_SMARTCARD_NAME = 'digsig.ctr'

 _CERT_FROM_SMARTCARD_PUBKEY = 'digsig.pem'

 _CERT_PARSED_OUTFILE = 'certParse.txt'

 _PRIVATE_KEY_FOLDER = 'DoDRootCA/DoDCAI/UserCerts/DCcerts/private_keys'

 _CERTS_DIR = 'DoDRootCA/DoDCAI/UserCerts/DCcerts'

 _P12_DIR = 'DoDRootCA/DoDCAI/UserCerts/DCcerts/P12'

 _DEST_P12_DIR = '/var/www/p12files/'

 def __init__(self, opensslConfigFile, rootDir, dodCA, serverIpAddress):

 self.opensslConfigFile = opensslConfigFile

 self.rootDir = rootDir

 self.dodCA = dodCA

 self.serverIpAddress = serverIpAddress

 self.workingDirTmp = os.path.join(self.rootDir, 'tmp')

 if(not os.path.isdir(self.workingDirTmp)):

 os.mkdir(self.workingDirTmp)

 self.certsDir = os.path.join(self.rootDir, GenDerivedCredential._CERTS_DIR)

 self.p12Dir = os.path.join(self.rootDir, GenDerivedCredential._P12_DIR)

104

 if(not os.path.isdir(self.p12Dir)):

 os.mkdir(self.p12Dir)

 # make the private keys directory if we need to

 self.pkeysDir = os.path.join(self.rootDir,

GenDerivedCredential._PRIVATE_KEY_FOLDER)

 if not os.path.isdir(self.pkeysDir):

 os.mkdir(self.pkeysDir)

 self.certFromSmartcard = os.path.join(self.workingDirTmp,

GenDerivedCredential._CERT_FROM_SMARTCARD_NAME)

 self.certFromSmartcardPubkey = os.path.join(self.workingDirTmp,

GenDerivedCredential._CERT_FROM_SMARTCARD_PUBKEY)

 self.certParsed = os.path.join(self.workingDirTmp,

GenDerivedCredential._CERT_PARSED_OUTFILE)

 self.getCertFromSmartCard()

 good = self.authenticateCAC()

 if good:

 self.parseCertificate()

 self.genDerivedCredential()

 self.deliverCredential()

 else:

 print 'CAC Card Not Authenticated!'

self.cleanup()

 def getCertFromSmartCard(self):

 commandLine = 'pkcs15-tool --read-certificate 02 --output ' + self.certFromSmartcard

 args = shlex.split(commandLine)

 p = subprocess.Popen(args)

 # wait for the file to show up

 fileExists = os.path.exists(self.certFromSmartcard)

 while not fileExists:

 time.sleep(1)

 fileExists = os.path.exists(self.certFromSmartcard)

 print 'Successfully got certificate from SmartCard!'

 # generate the public key from the certificate

 commandLine = 'openssl x509 -in ' + self.certFromSmartcard + ' -pubkey -noout'

 args = shlex.split(commandLine)

 p = subprocess.Popen(args, stdout=subprocess.PIPE)

 stdout, stderr = p.communicate()

105

 f = open(self.certFromSmartcardPubkey, 'w')

 f.write(stdout)

 f.close()

 # wait for the file to show up

 fileExists = os.path.exists(self.certFromSmartcardPubkey)

 while not fileExists:

 time.sleep(1)

 fileExists = os.path.exists(self.certFromSmartcardPubkey)

 print 'Successfully generated certificate public key!'

 def authenticateCAC(self):

 commandline = 'openssl verify -CAfile ' + self.dodCA + ' ' + self.certFromSmartcard

 args = shlex.split(commandline)

 p = subprocess.Popen(args, stdout=subprocess.PIPE)

 out,err = p.communicate()

 print '*** CAFile VERIFICATION ***'

 print out

 # parse 'out' to make sure it looks like this: /home/al/pki_project/ssl/tmp/digsig.ctr: OK

 if('OK' not in out):

 return False

 time.sleep(1)

 # create a dummy message to sign w/ cac card's private key

 msgFile = os.path.join(self.workingDirTmp, 'message')

 f = open(msgFile,'w')

 f.write('sometext')

 f.close()

 time.sleep(1)

 # create a hash of the message

 hashedFile = os.path.join(self.workingDirTmp, 'hashed')

 commandLine = 'openssl dgst -sha256 -binary -out ' + hashedFile + ' ' + msgFile

 args = shlex.split(commandLine)

 p = subprocess.Popen(args)

 time.sleep(1)

 # sign the hashed message w/ the cac card's private key

 signedFile = os.path.join(self.workingDirTmp, 'out.signed')

 commandLine= 'pkcs15-crypt -s --sha-256 --pkcs1 -k 02 -i ' + hashedFile + ' -o ' +

106

signedFile

 args = shlex.split(commandLine)

 p = subprocess.Popen(args)

 p.communicate()

 # verify

 commandLine = 'openssl dgst -verify ' + self.certFromSmartcardPubkey + ' -sha256 -

signature ' + signedFile + ' ' + msgFile

 print commandLine

 args = shlex.split(commandLine)

 p = subprocess.Popen(args, stdout=subprocess.PIPE)

 out,err = p.communicate()

 print '*** DigSig VERIFICATION ***'

 print out

 if ('OK' not in out):

 return False

 return True

 def parseCertificate(self):

 f = open(self.certParsed, 'w')

 # run openssl on this cert to get the info

 commandLine = 'openssl x509 -in ' + self.certFromSmartcard + ' -text -noout'

 args = shlex.split(commandLine)

 subprocess.Popen(args, stdout=f)

 f.flush()

 os.fsync(f.fileno())

 f.close()

 # wait 1 second before proceeding, sometimes the file isn't showing up :(

 time.sleep(1)

 # read it line by line, and look for the 'Subject:', if so parse it

 with open(self.certParsed) as f:

 for line in f:

 # look for the commmon name

 if 'Subject:' in line:

 # parse this line for the CN

 lineWithoutWhitespace = line.strip()

 lineSplit = lineWithoutWhitespace.split(',')

 # loop through and find the CN= tag

 for keyValPair in lineSplit:

 kvPair = keyValPair.strip()

 kvPairSplit = kvPair.split('=')

107

 k = kvPairSplit[0]

 v = kvPairSplit[1]

 if(k=='CN'):

 nameAndEmail = v

 nameAndEmailSplit = nameAndEmail.split('/')

 name = nameAndEmailSplit[0]

 self.cn = '.'.join(name.split())

 self.email = kvPairSplit[2]

 print 'Common Name = ' + self.cn

 print 'Email = ' + self.email

 self.genTempConfigFileFromOrig(self.cn, self.email)

 def genTempConfigFileFromOrig(self, commonName, email):

 f = open(self.opensslConfigFile, 'r')

 origConfigFileLines = f.readlines()

 newConfigFile = list(origConfigFileLines)

 origIdx = 0

 newIdx = 0

 for line in origConfigFileLines:

 if '[req]' in line:

 newIdx = newIdx + 1

 lineToAdd = 'prompt = no\n'

 newConfigFile.insert(newIdx, lineToAdd)

 if '[req_distinguished_name]' in line:

 newIdx = newIdx + 1

 # add the commonName_default

 lineToAdd = 'CN=' + self.cn+'\n'

 # add the line

 newConfigFile.insert(newIdx, lineToAdd)

 newIdx = newIdx + 1

 lineToAdd = 'emailAddress=' + self.email+'\n'

 newConfigFile.insert(newIdx, lineToAdd)

 origIdx = origIdx + 1

 newIdx = newIdx + 1

 self.tmpSSLConfigFile = self.opensslConfigFile+'.tmp'

 f = open(self.tmpSSLConfigFile, 'w')

 for item in newConfigFile:

 f.write("%s" % item)

 f.close()

108

 def genDerivedCredential(self):

 # generating the key

 self.keyName = os.path.join(self.pkeysDir,self.cn+'key.key')

 commandLine = 'openssl genrsa -out ' + self.keyName + ' 2048'

 args = shlex.split(commandLine)

 subprocess.Popen(args)

 time.sleep(1)

 # generate the csr

 self.csrFile = os.path.join(self.workingDirTmp, self.cn + 'dc.csr')

 commandLine = 'openssl req -new -key ' + self.keyName + ' -config ' +

self.tmpSSLConfigFile + ' -out ' + self.csrFile

 args = shlex.split(commandLine)

 p = subprocess.Popen(args)

 time.sleep(1)

 os.unlink(self.tmpSSLConfigFile)

 # sign the csr w/ the CA

 self.certFile = os.path.join(self.certsDir, self.cn+'dc.crt')

AL ADDED BATCH TO NOT PROMPT FOR CA SIGNING

commandLine = 'openssl ca -batch -config ' + self.opensslConfigFile + ' -key doddci -

name CA_dccai -in ' + self.csrFile + ' -out ' + self.certFile

args = shlex.split(commandLine)

p = subprocess.Popen(args)

p.communicate()

 p = subprocess.Popen('openssl', stdin=subprocess.PIPE, stdout=subprocess.PIPE)

 p.communicate(input='engine dynamic -pre SO_PATH:/usr/lib/engines/engine_pkcs11.so -

pre ID:pkcs11 -pre NO_VCHECK:1 -pre LIST_ADD:1 -pre LOAD ' + \

 '-pre MODULE_PATH:/usr/lib/x86_64-linux-gnu/opensc-pkcs11.so\nca -engine

pkcs11 -batch ' + \

 '-config ' + self.opensslConfigFile + ' -cert ' + self.certFromSmartcard +\

 ' -keyform engine -keyfile slot_1-id_02 -name CA_usercerts -in ' + self.csrFile +\

 ' -out ' + self.certFile + '\n')

 # make the P12 file

 self.p12Filename = self.cn+'dc.p12'

 self.p12File = os.path.join(self.p12Dir, self.p12Filename)

 commandLine = 'openssl pkcs12 -export -inkey ' + self.keyName + ' -in ' + self.certFile + ' -

out ' + self.p12File

 args = shlex.split(commandLine)

109

 p = subprocess.Popen(args)

 p.communicate()

 # copy the p12 file to the apache directory where it will be delivered

 shutil.copy(self.p12File, GenDerivedCredential._DEST_P12_DIR)

 self.p12FileInWebDir = os.path.join(GenDerivedCredential._DEST_P12_DIR,

self.p12Filename)

 def deliverCredential(self):

 hyperlink = self.serverIpAddress + '/p12files/' + self.p12Filename

 qr = qrcode.QRCode(

 version=1,

 error_correction=qrcode.constants.ERROR_CORRECT_L,

 box_size=10,

 border=4,

)

 qr.add_data(hyperlink)

 qr.make(fit=True)

 img = qr.make_image()

 qrCodeFile = '/home/al/pki_project/qr_png/p12_qr.png'

 f = open(qrCodeFile,'w')

 img.save(f)

 f.close()

 #subprocess.Popen([qrCodeFile], shell=True)

 def cleanup(self):

 time.sleep(5)

 # delete everything from the tmp directory

 flist = os.listdir(self.workingDirTmp)

 for f in flist:

 try:

 os.unlink(os.path.join(self.workingDirTmp,f))

 except Exception as e:

 print e

if __name__=='__main__':

 rootDir = '/home/al/pki_project/ssl'

 ####### AL CHANGED THE PEM FILE TO POINT TO USER CA INSTEAD OF DOD

 dodCA = '/home/al/pki_project/auth_ca_certs/simdodcacerts.pem'

110

 opensslConfigFile = '/home/al/pki_project/ssl/openssl.cnf'

 serverIpAddress = '192.168.1.12'

 gdc = GenDerivedCredential(opensslConfigFile, rootDir, dodCA, serverIpAddress)

E.2 CAC Signed DC Results

al@al-gnome:~/pki_project/python$ python SignCSRWithSmartCard.py

Successfully got certificate from SmartCard!

Successfully generated certificate public key!

*** CAFile VERIFICATION ***

/home/al/pki_project/ssl/tmp/digsig.ctr: OK

Using reader with a card: SCM Microsystems Inc. SCR 331 [CCID Interface] (21120710216109)

00 00

Using reader with a card: SCM Microsystems Inc. SCR 331 [CCID Interface] (21120710216109)

00 00

Enter PIN [PIV Card Holder pin]:

openssl dgst -verify /home/al/pki_project/ssl/tmp/digsig.pem -sha256 -signature

/home/al/pki_project/ssl/tmp/out.signed /home/al/pki_project/ssl/tmp/message

*** DigSig VERIFICATION ***

Verified OK

Common Name = User.2.Dig.Sig

Email = user2@mil.mil

Generating RSA private key, 2048 bit long modulus

...+++

....................+++

e is 65537 (0x10001)

Using configuration from /home/al/pki_project/ssl/openssl.cnf

engine "pkcs11" set.

PKCS#11 token PIN:

Check that the request matches the signature

Signature ok

Certificate Details:

 Serial Number: 1 (0x1)

 Validity

 Not Before: Apr 13 14:56:52 2014 GMT

 Not After : Apr 20 14:56:52 2014 GMT

 Subject:

 countryName = US

 organizationName = U.S. Government

 organizationalUnitName = DoD

111

 organizationalUnitName = PKI

 commonName = User.2.Dig.Sig

 emailAddress = user2@mil.mil

 X509v3 extensions:

 X509v3 Basic Constraints:

 CA:FALSE

 X509v3 Key Usage:

 Digital Signature, Non Repudiation

 X509v3 Subject Key Identifier:

 53:6F:05:65:B1:B9:4B:12:00:A8:1C:7C:DA:96:C3:20:E5:17:AC:56

 X509v3 Authority Key Identifier:

 keyid:5E:1A:EB:F8:B8:64:08:FA:8B:81:53:F5:56:4C:2D:AC:8D:BD:4C:3D

 DirName:/C=US/O=U.S. Government/OU=DoD/OU=PKI/CN=DoD CA I Sim

 serial:03

Certificate is to be certified until Apr 20 14:56:52 2014 GMT (7 days)

Write out database with 1 new entries

Data Base Updated

Enter Export Password:

Verifying - Enter Export Password:

al@al-gnome:~/pki_project/python$

E.3: CAC Signed Derived Credential Certificate

al@al-gnome:~/pki_project/ssl/DoDRootCA/DoDCAI/UserCerts/DCcerts$ openssl x509 -in

User.2.Dig.Sigdc.crt -text

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number: 1 (0x1)

 Signature Algorithm: sha1WithRSAEncryption

 Issuer: C=US, O=U.S. Government, OU=PKI, OU=DoD, CN=User 2 Dig

Sig/emailAddress=user2@mil.mil

 Validity

 Not Before: Apr 13 14:56:52 2014 GMT

 Not After : Apr 20 14:56:52 2014 GMT

 Subject: C=US, O=U.S. Government, OU=DoD, OU=PKI,

CN=User.2.Dig.Sig/emailAddress=user2@mil.mil

 Subject Public Key Info:

112

 Public Key Algorithm: rsaEncryption

 Public-Key: (2048 bit)

 Modulus:

 00:c3:f2:94:4f:18:aa:28:71:c1:d6:39:05:31:ae:

 62:5f:f3:6c:53:a0:dd:06:31:bc:71:22:0a:21:3f:

 ca:b2:8e:a1:5c:ff:0b:0b:0d:bb:b6:4c:4c:a8:84:

 ef:74:83:d8:82:40:be:e8:c0:32:91:2e:46:07:67:

 a5:a0:66:e4:81:ca:86:61:fd:69:0d:2e:b4:fb:d3:

 85:db:2c:af:e5:e8:fc:32:bd:46:fb:75:6f:92:a8:

 06:60:d9:33:8f:2b:ea:c6:8e:5d:b9:98:bb:3b:59:

 75:9d:e0:e0:a7:a6:fa:09:67:40:cb:53:99:57:26:

 26:f1:2a:40:bc:3c:9d:d0:5c:f5:a6:0c:b0:be:24:

 f5:e9:a6:bf:e2:22:d4:12:60:c1:dc:96:58:49:4a:

 a8:ba:2e:63:8e:f9:37:a8:c0:67:48:54:26:b9:47:

 37:4b:78:0d:fe:f1:de:78:e9:c9:7c:ae:a2:48:83:

 03:3e:0d:c7:8b:7c:b3:06:90:90:b9:54:ec:5b:60:

 5d:4b:a4:48:ba:9f:e2:76:50:f7:be:ce:85:7b:75:

 bc:5d:49:f7:4b:56:20:a0:6e:c0:dd:99:68:51:0d:

 ed:7a:7d:b0:54:f1:8d:58:df:4f:9f:79:1f:ad:80:

 ca:ce:d5:8a:c3:27:5c:31:3d:7a:a5:43:8e:81:85:

 71:dd

 Exponent: 65537 (0x10001)

 X509v3 extensions:

 X509v3 Basic Constraints:

 CA:FALSE

 X509v3 Key Usage:

 Digital Signature, Non Repudiation

 X509v3 Subject Key Identifier:

 53:6F:05:65:B1:B9:4B:12:00:A8:1C:7C:DA:96:C3:20:E5:17:AC:56

 X509v3 Authority Key Identifier:

 keyid:5E:1A:EB:F8:B8:64:08:FA:8B:81:53:F5:56:4C:2D:AC:8D:BD:4C:3D

 DirName:/C=US/O=U.S. Government/OU=DoD/OU=PKI/CN=DoD CA I Sim

 serial:03

 Signature Algorithm: sha1WithRSAEncryption

 1b:00:47:46:0d:17:3e:95:4d:d4:dc:29:26:d6:43:ef:0f:3e:

 ad:8b:ff:b6:18:ae:3f:07:2f:98:19:5b:e0:d1:d6:44:0d:f0:

 88:16:75:74:3f:b0:37:b5:38:32:92:10:42:91:8b:57:76:cb:

 7c:fc:37:94:56:29:f4:b6:87:30:fe:8f:42:2c:58:c6:c5:77:

 cd:67:e7:9f:43:f7:f5:fe:8d:cb:9c:d4:f7:d7:f9:df:b1:a8:

 af:07:09:dd:6b:63:11:30:33:e8:fb:b2:e8:51:b6:3f:89:37:

 48:df:13:cf:8e:a9:0b:92:24:81:cd:06:ea:68:e2:07:ea:2c:

 ad:2f:b8:d7:9d:e2:7c:7b:32:1b:6b:5b:47:22:3d:6e:65:e9:

 f2:40:59:df:00:37:1f:33:a4:03:0f:b5:8d:52:49:29:1a:4b:

113

 c9:c8:8d:3b:11:20:a2:c1:ab:a3:0f:0d:1f:a7:8a:3d:66:bd:

 ea:c1:85:77:ba:6a:39:4f:c4:02:0c:a8:df:4f:57:37:3a:9a:

 30:42:24:99:9d:44:c8:03:d6:bb:91:1c:2f:fd:aa:80:b7:59:

 76:b9:6b:8f:df:b2:8a:52:b3:21:e6:1e:2f:56:83:5b:11:03:

 87:66:bb:7d:f8:7b:6e:ab:1b:64:2d:a9:8f:85:af:86:7b:79:

 c0:d8:d1:e7

114

Appendix F: Server Driven Derived Credential

F.1: Python Implementation Code

#!/usr/bin/env python

-*- coding: utf-8 -*-

import os

import subprocess

import shlex

import ConfigParser

import time

import shutil

import qrcode

import shutil

class GenDerivedCredential:

 _CERT_FROM_SMARTCARD_NAME = 'digsig.ctr'

 _CERT_FROM_SMARTCARD_PUBKEY = 'digsig.pem'

 _CERT_PARSED_OUTFILE = 'certParse.txt'

 _PRIVATE_KEY_FOLDER = 'DoDRootCA/DoDDCCAI/private_keys'

 _CERTS_DIR = 'DoDRootCA/DoDDCCAI/DCCerts'

 _P12_DIR = 'DoDRootCA/DoDDCCAI/P12'

 _DEST_P12_DIR = '/var/www/p12files/'

 def __init__(self, opensslConfigFile, rootDir, dodCA, serverIpAddress):

 self.opensslConfigFile = opensslConfigFile

 self.rootDir = rootDir

 self.dodCA = dodCA

 self.serverIpAddress = serverIpAddress

 self.workingDirTmp = os.path.join(self.rootDir, 'tmp')

 if(not os.path.isdir(self.workingDirTmp)):

 os.mkdir(self.workingDirTmp)

 self.certsDir = os.path.join(self.rootDir, GenDerivedCredential._CERTS_DIR)

 self.p12Dir = os.path.join(self.rootDir, GenDerivedCredential._P12_DIR)

115

 if(not os.path.isdir(self.p12Dir)):

 os.mkdir(self.p12Dir)

 # make the private keys directory if we need to

 self.pkeysDir = os.path.join(self.rootDir,

GenDerivedCredential._PRIVATE_KEY_FOLDER)

 if not os.path.isdir(self.pkeysDir):

 os.mkdir(self.pkeysDir)

 self.certFromSmartcard = os.path.join(self.workingDirTmp,

GenDerivedCredential._CERT_FROM_SMARTCARD_NAME)

 self.certFromSmartcardPubkey = os.path.join(self.workingDirTmp,

GenDerivedCredential._CERT_FROM_SMARTCARD_PUBKEY)

 self.certParsed = os.path.join(self.workingDirTmp,

GenDerivedCredential._CERT_PARSED_OUTFILE)

 self.getCertFromSmartCard()

 good = self.authenticateCAC()

 if good:

 self.parseCertificate()

 self.genDerivedCredential()

 self.deliverCredential()

 else:

 print 'CAC Card Not Authenticated!'

self.cleanup()

 def getCertFromSmartCard(self):

 commandLine = 'pkcs15-tool --read-certificate 02 --output ' + self.certFromSmartcard

 args = shlex.split(commandLine)

 p = subprocess.Popen(args)

 # wait for the file to show up

 fileExists = os.path.exists(self.certFromSmartcard)

 while not fileExists:

 time.sleep(1)

 fileExists = os.path.exists(self.certFromSmartcard)

 print 'Successfully got certificate from SmartCard!'

 # generate the public key from the certificate

 commandLine = 'openssl x509 -in ' + self.certFromSmartcard + ' -pubkey -noout'

 args = shlex.split(commandLine)

 p = subprocess.Popen(args, stdout=subprocess.PIPE)

 stdout, stderr = p.communicate()

116

 f = open(self.certFromSmartcardPubkey, 'w')

 f.write(stdout)

 f.close()

 # wait for the file to show up

 fileExists = os.path.exists(self.certFromSmartcardPubkey)

 while not fileExists:

 time.sleep(1)

 fileExists = os.path.exists(self.certFromSmartcardPubkey)

 print 'Successfully generated certificate public key!'

 def authenticateCAC(self):

 commandline = 'openssl verify -CAfile ' + self.dodCA + ' ' + self.certFromSmartcard

 args = shlex.split(commandline)

 p = subprocess.Popen(args, stdout=subprocess.PIPE)

 out,err = p.communicate()

 print '*** CAFile VERIFICATION ***'

 print out

 # parse 'out' to make sure it looks like this: /home/al/pki_project/ssl/tmp/digsig.ctr: OK

 if('OK' not in out):

 return False

 time.sleep(1)

 # create a dummy message to sign w/ cac card's private key

 msgFile = os.path.join(self.workingDirTmp, 'message')

 f = open(msgFile,'w')

 f.write('sometext')

 f.close()

 time.sleep(1)

 # create a hash of the message

 hashedFile = os.path.join(self.workingDirTmp, 'hashed')

 commandLine = 'openssl dgst -sha256 -binary -out ' + hashedFile + ' ' + msgFile

 args = shlex.split(commandLine)

 p = subprocess.Popen(args)

 time.sleep(1)

 # sign the hashed message w/ the cac card's private key

 signedFile = os.path.join(self.workingDirTmp, 'out.signed')

 commandLine= 'pkcs15-crypt -s --sha-256 --pkcs1 -k 02 -i ' + hashedFile + ' -o ' +

117

signedFile

 args = shlex.split(commandLine)

 p = subprocess.Popen(args)

 p.communicate()

 # verify

 commandLine = 'openssl dgst -verify ' + self.certFromSmartcardPubkey + ' -sha256 -

signature ' + signedFile + ' ' + msgFile

 print commandLine

 args = shlex.split(commandLine)

 p = subprocess.Popen(args, stdout=subprocess.PIPE)

 out,err = p.communicate()

 print '*** DigSig VERIFICATION ***'

 print out

 if ('OK' not in out):

 return False

 return True

 def parseCertificate(self):

 f = open(self.certParsed, 'w')

 # run openssl on this cert to get the info

 commandLine = 'openssl x509 -in ' + self.certFromSmartcard + ' -text -noout'

 args = shlex.split(commandLine)

 subprocess.Popen(args, stdout=f)

 f.flush()

 os.fsync(f.fileno())

 f.close()

 # wait 1 second before proceeding, sometimes the file isn't showing up :(

 time.sleep(1)

 # read it line by line, and look for the 'Subject:', if so parse it

 with open(self.certParsed) as f:

 for line in f:

 # look for the commmon name

 if 'Subject:' in line:

 # parse this line for the CN

 lineWithoutWhitespace = line.strip()

 lineSplit = lineWithoutWhitespace.split(',')

 # loop through and find the CN= tag

 for keyValPair in lineSplit:

 kvPair = keyValPair.strip()

 kvPairSplit = kvPair.split('=')

118

 k = kvPairSplit[0]

 v = kvPairSplit[1]

 if(k=='CN'):

 nameAndEmail = v

 nameAndEmailSplit = nameAndEmail.split('/')

 name = nameAndEmailSplit[0]

 self.cn = '.'.join(name.split())

 self.email = kvPairSplit[2]

 print 'Common Name = ' + self.cn

 print 'Email = ' + self.email

 self.genTempConfigFileFromOrig(self.cn, self.email)

 def genTempConfigFileFromOrig(self, commonName, email):

 f = open(self.opensslConfigFile, 'r')

 origConfigFileLines = f.readlines()

 newConfigFile = list(origConfigFileLines)

 origIdx = 0

 newIdx = 0

 for line in origConfigFileLines:

 if '[req]' in line:

 newIdx = newIdx + 1

 lineToAdd = 'prompt = no\n'

 newConfigFile.insert(newIdx, lineToAdd)

 if '[req_distinguished_name]' in line:

 newIdx = newIdx + 1

 # add the commonName_default

 lineToAdd = 'CN=' + self.cn+'\n'

 # add the line

 newConfigFile.insert(newIdx, lineToAdd)

 newIdx = newIdx + 1

 lineToAdd = 'emailAddress=' + self.email+'\n'

 newConfigFile.insert(newIdx, lineToAdd)

 origIdx = origIdx + 1

 newIdx = newIdx + 1

 self.tmpSSLConfigFile = self.opensslConfigFile+'.tmp'

 f = open(self.tmpSSLConfigFile, 'w')

 for item in newConfigFile:

 f.write("%s" % item)

 f.close()

119

 def genDerivedCredential(self):

 # generating the key

 self.keyName = os.path.join(self.pkeysDir,self.cn+'key.key')

 commandLine = 'openssl genrsa -out ' + self.keyName + ' 2048'

 args = shlex.split(commandLine)

 subprocess.Popen(args)

 time.sleep(1)

 # generate the csr

 self.csrFile = os.path.join(self.workingDirTmp, self.cn + 'dc.csr')

 commandLine = 'openssl req -new -key ' + self.keyName + ' -config ' +

self.tmpSSLConfigFile + ' -out ' + self.csrFile

 args = shlex.split(commandLine)

 p = subprocess.Popen(args)

 time.sleep(1)

 os.unlink(self.tmpSSLConfigFile)

 # sign the csr w/ the CA

 self.certFile = os.path.join(self.certsDir, self.cn+'dc.crt')

 ############ AL ADDED BATCH TO NOT PROMPT FOR CA SIGNING

 commandLine = 'openssl ca -batch -config ' + self.opensslConfigFile + ' -key doddci -name

CA_dccai -in ' + self.csrFile + ' -out ' + self.certFile

 args = shlex.split(commandLine)

 p = subprocess.Popen(args)

 p.communicate()

 # make the P12 file

 self.p12Filename = self.cn+'dc.p12'

 self.p12File = os.path.join(self.p12Dir, self.p12Filename)

 commandLine = 'openssl pkcs12 -export -inkey ' + self.keyName + ' -in ' + self.certFile + ' -

out ' + self.p12File

 args = shlex.split(commandLine)

 p = subprocess.Popen(args)

 p.communicate()

 # copy the p12 file to the apache directory where it will be delivered

 shutil.copy(self.p12File, GenDerivedCredential._DEST_P12_DIR)

 self.p12FileInWebDir = os.path.join(GenDerivedCredential._DEST_P12_DIR,

self.p12Filename)

120

 def deliverCredential(self):

 hyperlink = self.serverIpAddress + '/p12files/' + self.p12Filename

 qr = qrcode.QRCode(

 version=1,

 error_correction=qrcode.constants.ERROR_CORRECT_L,

 box_size=10,

 border=4,

)

 qr.add_data(hyperlink)

 qr.make(fit=True)

 img = qr.make_image()

 qrCodeFile = '/home/al/pki_project/qr_png/p12_qr.png'

 f = open(qrCodeFile,'w')

 img.save(f)

 f.close()

 #subprocess.Popen([qrCodeFile], shell=True)

 def cleanup(self):

 time.sleep(5)

 # delete everything from the tmp directory

 flist = os.listdir(self.workingDirTmp)

 for f in flist:

 try:

 os.unlink(os.path.join(self.workingDirTmp,f))

 except Exception as e:

 print e

if __name__=='__main__':

 rootDir = '/home/al/pki_project/ssl'

 ####### AL CHANGED THE PEM FILE TO POINT TO USER CA INSTEAD OF DOD

 dodCA = '/home/al/pki_project/auth_ca_certs/simdodcacerts.pem'

 opensslConfigFile = '/home/al/pki_project/ssl/openssl.cnf'

 serverIpAddress = '192.168.1.12'

 gdc = GenDerivedCredential(opensslConfigFile, rootDir, dodCA, serverIpAddress)

121

F.2 Server Driven Output

al@al-gnome:~/pki_project/python$ python GenDerivedCredentialGemalto.py

Successfully got certificate from SmartCard!

Successfully generated certificate public key!

*** CAFile VERIFICATION ***

/home/al/pki_project/ssl/tmp/digsig.ctr: OK

Using reader with a card: SCM Microsystems Inc. SCR 331 [CCID Interface] (21120710216109)

00 00

Using reader with a card: SCM Microsystems Inc. SCR 331 [CCID Interface] (21120710216109)

00 00

Enter PIN [PIV Card Holder pin]:

openssl dgst -verify /home/al/pki_project/ssl/tmp/digsig.pem -sha256 -signature

/home/al/pki_project/ssl/tmp/out.signed /home/al/pki_project/ssl/tmp/message

*** DigSig VERIFICATION ***

Verified OK

Common Name = User.2.Dig.Sig

Email = user2@mil.mil

Generating RSA private key, 2048 bit long modulus

................+++

................+++

e is 65537 (0x10001)

Using configuration from /home/al/pki_project/ssl/openssl.cnf

Check that the request matches the signature

Signature ok

Certificate Details:

 Serial Number: 4 (0x4)

 Validity

 Not Before: Apr 13 18:34:50 2014 GMT

 Not After : Apr 2 18:34:50 2017 GMT

 Subject:

 countryName = US

 organizationName = U.S. Government

 organizationalUnitName = DoD

 organizationalUnitName = PKI

 commonName = User.2.Dig.Sig

 emailAddress = user2@mil.mil

 X509v3 extensions:

 X509v3 Basic Constraints:

 CA:FALSE

122

 X509v3 Key Usage:

 Digital Signature, Non Repudiation

 X509v3 Subject Key Identifier:

 72:EC:69:01:17:98:E2:73:2D:3D:7C:A5:1D:86:32:11:AC:C7:B6:E8

 X509v3 Authority Key Identifier:

 keyid:40:C1:8C:FE:D4:64:B9:76:8D:B2:7A:07:59:B1:FC:9A:F4:7F:AC:21

 DirName:/C=US/O=U.S. Government/OU=DoD/OU=PKI/CN=DoD Root CA Sim

 serial:02

Certificate is to be certified until Apr 2 18:34:50 2017 GMT (1085 days)

Write out database with 1 new entries

Data Base Updated

Enter Export Password:

Verifying - Enter Export Password:

F.3 Server Driven Derived Credential Certificate

al@al-gnome:~/pki_project/ssl/DoDRootCA/DoDDCCAI/DCCerts$ openssl x509 -in

User.2.Dig.Sigdc.crt -text

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number: 4 (0x4)

 Signature Algorithm: sha1WithRSAEncryption

 Issuer: C=US, O=U.S. Government, OU=DoD, OU=PKI, CN=DoD DC CA I Sim

 Validity

 Not Before: Apr 13 18:34:50 2014 GMT

 Not After : Apr 2 18:34:50 2017 GMT

 Subject: C=US, O=U.S. Government, OU=DoD, OU=PKI,

CN=User.2.Dig.Sig/emailAddress=user2@mil.mil

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 Public-Key: (2048 bit)

 Modulus:

 00:b5:53:f8:95:76:a7:8c:15:27:7a:8a:b5:d5:58:

 39:88:0a:a7:41:89:ee:d6:0a:28:87:e6:11:68:ce:

 f7:23:2c:06:2b:c7:da:79:1a:ad:11:06:9f:ba:f3:

 f7:cf:fe:16:f6:28:7a:8e:d3:3f:59:e9:fd:43:24:

 bb:aa:0a:26:95:12:f2:5b:17:1b:ff:13:94:24:aa:

 a8:cd:50:82:d8:39:64:70:4c:d1:73:5b:8e:1a:eb:

 eb:92:5f:d1:6e:57:8d:9e:9b:3b:17:28:d7:e7:cf:

123

 b4:f7:2d:31:75:4d:dd:84:63:aa:ae:2e:c6:1d:07:

 dd:ea:94:88:cd:69:75:f0:6b:31:cb:40:af:25:19:

 fb:a3:16:ca:a3:4a:2d:5b:e0:e7:1f:53:dc:d7:b7:

 e1:7e:da:5b:f3:15:e8:50:65:3f:bb:36:8d:e1:25:

 0d:fe:2b:29:64:dc:35:48:2a:b7:d7:da:d8:97:a0:

 c1:f0:06:15:7f:cd:3e:a7:a0:5c:d7:95:ea:95:ca:

 62:8c:d8:a3:c6:f3:01:3a:3c:5a:ad:81:06:fc:bb:

 5d:03:f3:af:97:26:70:ba:6e:6e:f5:4b:81:77:f4:

 ec:92:14:51:6e:c5:97:01:45:c2:f8:d6:d8:c8:dd:

 55:e8:8b:64:8a:1d:81:f4:5b:9f:5d:4d:06:82:3e:

 97:2b

 Exponent: 65537 (0x10001)

 X509v3 extensions:

 X509v3 Basic Constraints:

 CA:FALSE

 X509v3 Key Usage:

 Digital Signature, Non Repudiation

 X509v3 Subject Key Identifier:

 72:EC:69:01:17:98:E2:73:2D:3D:7C:A5:1D:86:32:11:AC:C7:B6:E8

 X509v3 Authority Key Identifier:

 keyid:40:C1:8C:FE:D4:64:B9:76:8D:B2:7A:07:59:B1:FC:9A:F4:7F:AC:21

 DirName:/C=US/O=U.S. Government/OU=DoD/OU=PKI/CN=DoD Root CA Sim

 serial:02

 Signature Algorithm: sha1WithRSAEncryption

 15:18:07:5c:da:ce:91:01:73:f5:b6:7e:c4:78:39:7d:c7:44:

 fd:63:d9:b0:cb:97:f4:4c:f1:b4:83:49:12:a0:72:90:8f:30:

 fd:fe:4d:a6:84:de:2e:70:30:5f:b1:f3:1e:38:09:54:0e:03:

 9d:db:e6:49:38:f8:36:6f:0a:23:62:9c:6e:9f:29:b0:b9:82:

 8b:52:50:d9:19:29:16:64:a8:cf:ec:d7:93:f1:fc:7d:d0:29:

 df:28:7a:29:5d:b5:2f:45:d2:7c:e0:49:d4:e3:7e:8e:0d:49:

 07:84:55:a5:fe:56:f6:a9:c3:fc:f1:b5:4c:9f:eb:7a:a9:2e:

 93:73:22:9c:12:86:03:23:3a:25:12:07:82:13:cd:92:78:1e:

 ca:0b:08:37:79:2e:6e:f5:1f:6f:6d:e4:9b:06:1b:4d:eb:0f:

 65:c6:11:50:b8:22:e2:79:98:8c:cd:f5:c7:59:d9:b1:33:1e:

 6c:73:77:02:b4:94:be:a8:0f:dc:a1:60:d3:5d:e4:c7:33:18:

 19:f8:96:34:1c:c0:56:e5:f5:1b:98:57:a5:6e:af:fe:00:ae:

 bd:48:02:c5:a4:96:e6:77:e7:06:d2:cb:1e:b5:e8:35:c6:bb:

 b2:51:ac:39:68:5e:2b:95:9a:c0:b0:6d:9d:00:e6:87:90:8a:

 8c:47:04:ce

